ABSTRACT ALGEBRA

HOLDEN DAY SERIES IN BATIIEMATICS Earl E Cobmington and Anbrew M Geeason Ediors

Iniroductory Calculus
S Bell $J R$ Dhum J Leuts and J Rosenhlatt
Modern Unmersity Calculus
S Befl I R Alam J Lenst and J Rosenblait
Element iry Partal Diflerental Equations
P W Derg auff \mathcal{I} Afc Gregor
\section*{The Structure of Lie Groups G Hochiscinfd}
Abstract Algebra A Lindifrum Jr
Set Theory for the Blathematictant J Rubun
> Elements of General Topology > Sze Tsen ffa
Elements of Aodern Algebra
Sze Tsen ffor
Elements of Red Analysis
Sze Tsen Hu
Introduction to Contenporary Mathematics
Sze Tsen Ifu
Introduction to Gencral Topology
Sze Tsen Ifts

Homolosy Theory
Sze Tsen //u

ABSTRACT

 ALGEBRA
Andrew O. Lindstrum, Jr.

SOUTHERN ILLINOIS UNIVERSITY
AT EDWARDSVIILE
© Copynght 1967 by Helden Day Inc 500 Sansome Street San Francisco Calforn a All rights reserved
No part of ibis book may be repraduced in any form by animeograph or any other means withour permassion in writing from the publisher Library of Congress Catalog Card Number 6713835

Praited on the Unted Stues of America

Preface

My aim in writing this book was to present a logical development of the fundamentals of Abstract Algebra. I have endeavored to avoid assuming anything not proved prior to its use, and particularly to avoid illustrative examples from other parts of mathematics and elsewhere.

Such examples are often more confusing to the student than they are helpful since the student frequently is not acquainted sufficiently with the other material to appreciate, or in many instances, even to understand the examples. So far as 1 can recall at the moment of writing, I have deviated from this policy in only two instances: in some exercises giving groups as rotations of the equilateral triangle and the square, and in taking up briefly, in Chapter 5, the trisection of the angle. These two instances may very well be omitted without interfering with the continuity of the development.

As to the subject matter chosen, I hope that I have chosen the topics most essential to prepare the student for further reading in more specialized books on particular parts of algebra. I should mentoon that I have been most influenced by the early chapters on Algèbre by the great French mathematician, N. Bourbaki, and have generally followed the terminology used there. In recent years there have appeared many individual books devoted to Linear Algebra. A foundation for this subject, given from the point of view of the rest of the book, appears as Chapter 7.

The text is intended for use by the advanced undergraduate or the beginning graduate student. I have attempted to make the text self-contained, but some mathematical maturity is undoubtedly essential to success in mastering the material. The book starts at a relatively elementary level in discussing sets and mappings, and proceeds logically from there. No attempt is made to put the beginnings on a completely postulational basis, such as giving a completely axiomatic treatment of sets: also, no attempt is made to consider the ultimate in simplicity in that no systems with fewer properties than semigroups are treated.

Many of the theorems are left is exercises for the reader These we such that the method of proof is very much like one or more of the theorems proved in the text materal or else simple consequences of those theorems Numerous hints are given in the exercises for ading the student in proving such theorems

Logical symbols wre used whenever appropriate such as in stating and proving theorems stating definotions etc 1 have found consider able difference of feeling on such use \boldsymbol{A} decided majority of mathe maticians I have consulted on the matter definitely prefer this method purticularly among younger mathematictans It must be admitted that feeling u is strong on both sides I have attempted to use such sym bols some what sparingly at first often stating theorems ets both in words and in symbots giving the reader an opportunity to become familiar with them 1 feel and most of the mathematicians consulted agree with me that the use of logical symbols results in brevity and much greater clanty

The symbol is used throughout the book to indicate the end of d proof This is due to Prof Paul R Halmos and replaces the older QED

The matenal contanned here is somewhat more than the author has found possible to cover in an academic ye ir with even rather superior students This should enable a teacher using this book as a text to choose somewhat among the subjects considered and have enough to occupy a full year course In recent years I have covered very little of Chapter 7 but practically everything in the first six chapters

I have used four earier versions in mululithed form in teaching year courses in the subject In each revision \ddagger have attempted to remove difficulties which the students encountered th the previous version 1 am thus indebted to many former students for their con structive criticism and their discovery of many errors

I wish to express my appreciation to the Consulting Editor Prof Andrew M Gleason of Harvard and to my colleague Prof Clellie C Ourster for a number of helpful suggestions for improving the manuscript Also I wish to thank my colleagues Prof Ourster and Prof George V Poynor for reading the printers proofs and making useful comments on the final version of the book

A Short Introduction for the Student

One of the most important problems in the history of mathematics has been the solving of equations, and a very great part of algebra has been devoted to solving equations of two types: (1) single polynomial equations of degree n in one unknown, and (2) linear equations in several unknowns. The first six chapters of the present book are primarily devoted to equations of the first type, culminating in the Galois Theory of Equations. The last chapter and certain parts of the earlier chapters deal with equations of the second type.

It is usually the case in mathematics that continued attempts to solve a particular problem give rise to many more problems with many and various results. This is certainly the case with the attempts to solve equations.

One of these results has been an intensive study of the way in which elements combine under various laws of combining, such as addition, multiplication, and so forth. This has led to an investigation of such fundamental building blocks as sets and mappings. By using mappings of one set into another and defining laws of composition by means of such mappings, it is possible to prove many things more simply and more generally than was possible before. We consider this particularly in the first two chapters.

Another way of studying and obtaining general results is to consider rather uncomplicated systems. We do this in Chapters 1 and 2 when we consider semigroups and groups. By studying such systems we obtain results which apply, for example, to both addition and multiplication and also to many other methods of combinıng elements.

There are three very important mathematical systems which are very convenient to have available as soon as possible. These are the systems of the natural numbers, the integers, and the rational numbers. We derive these as quickly as is practicable, using the general abstract results which we have been developing. Their derivation. at least that of the integers and the rational numbers, is such as to be applicable to the derivation of other systems.

In Chapter 4 we proceed syste matically to develop more and more complicated mathematical systems having more and more laws of composition As we proceed we consider the most important prop erties of these systems

In Chapters 5 and 6 we are particulvely interested in that abstract system whose prototype is the set of rational numbers It is the system colled a field it is of particular stgnificance for the solution of equa thons since one important problem is to determine for a polynomal equation of degree n when it is posstble to find a formula involving addition subtraction multiplicalion division and the extraction of roots performed on the coefficients of the equation which will give the roots of the equation A field is the most general system in which addition subtraction multiphication and division (except by zero) can always be carned ont Many of the results of group theory are found to be useful in considering fields The culmination of our study of fields is contained in the theorems of the Galois Theory of Fields

A problem in mathematics can be disposed of in either of two ways by giving its solution or by proving that there is no solution The problem of finding a formula of the type described in the above paragraph is disposed of in the Galois Theory of Equations by the proof that such a formula cannot exist if the degree of the equation is 5 or greater We conclude Chapter 6 by considenng the Galois Theory of Equations

In Chapter 7 we complete our study of the problem of the second type given at the start of this Introduction and proceed to ar extensive discussion of vanous concepis which arose in the prosess of disposing of thes problem

So far we have been considenig how the solution of equanions has been studted However it often happens in mathematics that the methods developed to solve one problem or a set of problems are found to be of mportance and benefit in other parts of mathematacs This has definutely been the case with our presert subject Most of the methods and concepts which are developed in thas book have wade application both in algebra and in other branches of mothematics This is why we spend as much tume as we do in making precise and detailed investugation of so many different concepts if our purpose were only the solution of the iwo ypes of equations given at the begin rung we could accomplish it in much less tume and space

In accord with present practices in mathematucs the method of presentation is abstrict and formal Once the reader has grown accustomed to it he should find this clearer and more concse than other methods

Contents

1. Sets, Mappings, Lau's of Composition, and the Natural Numbers 1
1.1 Logic 1
1.2 Sets 2
1.3 Mapping of one set into another set 3
1.4 Set products and laws of composition 5
1.5 Properties of laws of internal composition 6
1.6 Natural numbers 8
1.7 Addtion of natural numbers 9
1.8 The cancellation law 10
1.9 Multiplication of natural numbers 12
1.10 Relations 13
1.11 Inequality in N 14
2. Semigroups, Equivalence Relations and the Rotional Integers 16
2.1 Semigroups 16
2.2 Products of mappings 17
2.3 The associative law generalized 19
2.4 Subsemigroups 21
2.5 Neutral elements and inverse elements 22
2.6 Definition of a group 23
2.7 A theorem about mappings 24
2.8 Equivalence relations 25
2.9 Semigroup products of semigroups 27
2.10 Composition table of a semigroup 28
2.11 Homomorphisms and isomorphisms 29
2.12 Inducing laws of composition in quotient sets 31
2.13 Definition of the rational integers 35
2.14 Absolute value of rational integers 36

Contents

215 Exponents 37
216 Divisibility in a semigroup 37
217 Divisibility in Z 39
218 Unique factorization 4!
219 Congruences 42
3 Groups 46
31 General properties of subgroups 46
32 Cyclic groups and subgroups 49
33 Equivalence relations in a group 52
34 Homomorphisms and isomorphisms of groups 57
35 Two famlies of groups 62
36 Conjugates 63
37 Direct products 65
38 Products of subgroups of groups 68
39 Free groups 70
310 Sylow theorems 74
311 Permutations and permutation groups 78
312 Finite abelian groups 83
313 Automorphisms and endomorphisms of the four group D_{s} 87
314 Compostion series 89
4 Systems wah more than one Lat of Composmont 92
41 Rings fields integral domains 92
42 Laws of extern il composition and groups with operators 97
43 Algebraic systems and homomorphisms 100
44 Modules 102
45 Linear dependence in an \boldsymbol{R} module 105
46 Vector spaces 108
47 Modules of hanear combinations and linear rel inons 110
48 Algebras 111
49 Quartermons 114
5 Polynomtals Factortzution Ideals and Extension of Frelds 116
51 Polynomals 116
5.2 Polynomials and polynomial functions 119
5.3 Gaussian semıgroups and Gaussian domains 122
5.4 Euclidean domains 125
5.5 Polynomials in two indeterminates 127
5.6 Fields of quotients of polynomials 127
5.7 Ideals 128
5.8 Principal ideal rings 129
5.9 Quotient rings and equivalence relations in a ring 130
5.10 Prime and maximal ideals 131
5.11 Extension of fields 133
5.12 Structure of fields 134
5.13 Adjunction of several elements to a field 138
5.14 Trisection of an arbitrary angle 140
515 Extensions of isomorphisms 141
6. Fields 143
61 Prime fields 143
6.2 Conjugate elements and automorphisms of fields 144
6.3 Normal extensions of fields and normal polynomials 146
6.4 Separabılity 148
6.5 Subfields and automorphisms 150
6.6 Roots of unity 152
6.7 Finite fields 153
6.8 Primitive elements 155
6.9 The Galois theory of fields 156
6.10 The cyclotomic field 158
6.11 Pure extension fields 160
6.12 Solvability by radicals 162
7. Linear Mappings and Matrices 165
7.1 Linear mappings of modules 165
7.2 Matrices 167
7.3 Rank 170
7.4 Change of basis 172
7.5 Coordinates 173
7.6 Application to linear equations 175
7.7 Row-equivalence and elementary operations 176
7.8 A particular hind of basis for a vector subspace 178
79 Equivalence of matrices over a field 180
710 Equivalence of matnces over a Euclidean ring 182
711 Equvalence over $[[\lambda]$ simulamy 184
712 Vector subsp ices invartant under a linear transform ition 186
713 Minmum polynomals 190
714 Cyche spaces and transformations 193
715 Noncyclic linear transformations 199
716 Invariant factors and similanty invamants 201
Biblography 203
Index 205

Chapter 1: Sets, Mappings, Laws of

Composition, and Natural Numbers

In this chapter we begin with a presentation of certain notation and symbols which we shall use throughout the book. Then we discuss sets, mappings, and set products and use them to define laws of internal composition. Next we consider various fundamental properties which may be possessed by such laws. Finally, we end the chapter with a development of a mathematical system of the utmost importance, the natural numbers.

1. LOGIC

We shall assume a knowledge of ordinary logic. In giving mathematical proofs and in making mathematical statements in general, it is often necessary to say, "if statement A holds, then statement B holds." It is briefer to say, "statement A implies statement B," or briefer yet to say, " A implies B," where we have let the letter A represent one statement and the letter B another. We then proceed one step further and introduce a symbol for the word "implies," listing it and several other useful logical symbols below.

The symbol \Rightarrow means "implies" or "imply," depending on the context. Thus we write $A \Rightarrow B$, and read it, " A implies B."

The symbol \Leftrightarrow means, when placed between two statements, that each statement implies the other. Thus it can be interpreted to mean. "if and only if." Thus $A \Leftrightarrow B$ can be read, " A implies B and is implied by B," or, " A if and only if B." So this means that A is a necessary and sufficient condition for B, and B is a necessary and sufficient condition for A.

The symbol \ni means "such that."
The symbol \exists means "there exists" or "there exist," depending on the context.

The symbol \forall means "for all," "for every," or "for each," depending on the context.

The symbol / when wntten through another symbol means the negation of the statement in which the second symbol occurs Thus It means there does not exist or there do not exist depending on the context

Since the reader may not be fquminr with the use of these logical symbols we shall use them somewhat sparingly at first and we shall often give statements twice once in symbolic form ond then written out in words (or in the reverse order)

We shall use equality of two objects is meaning identity and thus we have the following properties in which the letters $a b$ crepresent any objects with which we may deal
$E_{f} a=a$ the reflexne property
E_{s} If $a=b$ then $b=a$ the symmetric property
E_{5} If $a=b$ and $b-1$ then $a=\{$ the transune groperty
These last two properties can be wntten using symbols is follows
E, $(a=b) \Rightarrow(b=a) \quad E_{\mathrm{T}}(a-b$ and $b-c) \Rightarrow(a=c)$

, SETS

We shall not attempt to give a defination of a set Usually it will be sufficient for the determantion of a set A to have a criterion by whish to determine whether or not a p irticular object x belongs to A We may on occasion use the terms collection groupins as synonyms for set We shall say that a set consists of elements or objects

In glving a set S we may write $S=\{a b \in d\}$ and mean that S consists of the objects $a b c \quad$ which are listed within the braces or if $\phi(x)$ is the condition (or the conditions) which an ele ment x of S must satisfy in order to belong to S we may write S $\{x \mid \phi(x)\}$ and by this mean that S consssts of all objects x whech satisfy the condtuon $\phi(x)$

Definition $21 a \in A$ and only if a is an element of the set A [1n symbols $(a \in A) \Leftrightarrow a$ is an element of the set A This is read a belongs to A or sometimes a belonging to A]
$A \subset B$ where A ond B are sets if and only if whenever $a \in A$ then $a \in B$ (This is read A is contaned in B which means that every element of A is an element of B)
$A \supset B$ if and only if $B \subset A$
A is a subset of B if and only if $A \subset B$
A is a proper subset of B if and only if $A \subset B$ and $A \ngtr \boldsymbol{B}$
\varnothing denotes the empty (or null) set. (That is, \varnothing is the set containing no elements.)

Problem 2.1. Prove that if A and B are any two sets, then $A=B$ if and only if $A \subset B$ and $B \subset A$.

In Problems 2.2 and 2.3 and in Problems 3.1 through 3.5 we shall consider the following particular sets: $D=\{a, b, c, d\}, E=\{a, b, d\}$, $F=\{a, d, e . f\}, G=\{d, e, f, g\}, U=\{a . b, c, d, e, f, g\}$.

Problem 2.2. Find all subsets of the sets D and E. (Do not forget \varnothing.)

Definition 2.2. Let A and B be any subsets of a set S. Then $A \cup B$ is the set of all elements belonging to A, to B, or to both. It is called the union of A and $B . A \cap B$ is the set of all elements belonging both to A and to B. It is called the intersection or common part of A and B. The sets A and B are called disjoint if and only if $A \cap B$ $=\varnothing$.

Problem 2.3. Find $D \cup E, D \cap E, D \cap F, D \cap G$.
Problem 2.4. Express $A \cup B$ and $A \cap B$ in the form immediately preceding Definition 2.1.

3. MAPPING OF ONE SET INTO ANOTHER

Definition 3.1. A mapping, α, of a set, S, into a set, T, is defined whenever to each element $s \in S$, there is associated with it exactly one element $t \in T$. The element, t, is called the image of s and we usually denote it by $s \alpha=t$, or, to use functional notation, $\alpha(s)=t$. The mapping itself is sometimes written as $\alpha: S \rightarrow T$. The set of all elements of T which are images under α of elements of S is called the set of images of S inder α, and is denoted by $S \alpha$.

The reader should observe that the same element of the set T may be the image of several different elements of S. Thus, α is a mapping of the set D into the set E as defined immediately above Problem 2.2, if $a \alpha=a, b \alpha=a . c \alpha=b, d \alpha=d$. Here $a \in T$ is the image of both $a \in S$ and $b \in S$.

Not all the elements of the set T need to be images of elements of S. Thus β is a mapping of E into F (above Problem 2.2) if $a \beta=a$, $b \beta=d, d \beta=c$. Here f is not the image of any element of S (which here is E).

However, γ defined by $a \gamma=a, b \gamma=b, d \gamma=d$ is not a mapping of D into E, since there is no image given for the element $c \in D$.

Definition 32 If a and β are mappings of the set S into the set T then $\alpha=\beta$ if and only of for all $s \in S$ the image under α is the same as the imatge under β [In symbols $(\alpha=\beta) \Leftrightarrow(\forall s \in S$ $s \alpha=s \beta$) $]$

In the particular mapping β given above we observed that not all elements of F were images of elements of C It is convenient to have 1 particular name for mappings of S into T in which all elernents of T are images Also th the mapping or above $a \in E$ was the image of tho elements a $b \in D$ Here also it is convenient to have a par tucular name for mappings which do not have this property that is for mappings of S anto T in which no element of T is the image of more than one element of S

Definition 33 Let a be a mapping of the set S into the set T Then we have
(i) α is a mpping of S omo T of and only if each element of T in the tmage of some element of S
(b) κ is a 1 I mapping \{read one to one) of S into T if and only if no two elements of S have the same amage in T

It should be noted that S and T moy be the same set say S Then we refer to mappans of S into S as mappitigs of S ano uself (or onto usel/)

Problim 31 Wheh of the following mappings of D into F are I 1^{n} Which are onton (a) $a \delta-d \quad b \delta-$ c $t \delta-d d \delta-a$ (b) $a t-e b \theta-f(\theta-a d \theta-d$ (c) $a \phi-e \quad b \phi=e<\phi-e d \phi-e$ (D and F ds of $\$ 2$)

Problems 32 (a) Show thdt $f a-a b-b$ fi-q $d i-d$ then cis a 11 mapptng of D onto itself (b) Show that if for an arbi trary set $S \quad \forall_{s} \in S \quad H^{-}$, then \& is a 1 I mapping of S onto itself This mapping is called the dentity mapping of S otio aself

Problem 33 Sthow that there does not exist a 1 - 1 mapping of D onto E Gencralize

Sornetimes we are interested only in how a mapping of S into T affects a particular subset of S And gorng in the opposite direction we may have a mapping of a subset S of S into a subset T_{1} of T and we may wish to extend ahos mapping to get a mapping of S into T We now introduce terminology for these cises

Definition 34 Let $S_{1} T_{1}$ be subsets of the sets S and T respectively
(a) Let α be a mapping of S into T. Then α_{1}, defined by ($\forall s_{1} \in S_{1}$, $s_{1} \alpha_{1}=t \Leftrightarrow s_{1} \alpha=t$), is called the restriction of α to S_{1}.
(b) Let α be a mapping of S_{1} into T_{1}. Then a mapping, β, of S into T is an extension of α to $S \Leftrightarrow\left(\forall s \in S_{1}, s \alpha=s \beta\right)$.

Problem 3.4. Let $H=\{a, b\}$. Give the restriction to H of the mapping of D into E immediately following Definition 3.1.

Problem 3.5. After the manner of Definition 3.2 give three different extensions of β (introduced immediately following Definition 3.1.) to D.

4. SET PRODUCTS AND LAWS OF COMPOSITION

Definition 4.1. Let α be a mapping of the set I into the set A and let $\iota \alpha=a_{\iota}, \forall \iota \in I$. Then $\left\{a_{\imath}\right\}_{\iota \in \ell}$ is the set of all images under this mapping α. If I consists of all elements $i \in N \ni i \leqslant n \in N$, then the set of images is usually denoted by $\left\{a_{2}\right\}_{2=1,2, \ldots, n}$ or $\left\{a_{1}, a_{2}\right.$, $\left.\ldots, a_{n}\right\}$. (For definition of N, see Section 6 below.)

Thus $\left\{a_{2}\right\}_{1=1,2,3}$ denotes the set of three elements $\left\{a_{1}, a_{2}, a_{3}\right\}$.
Definition 4.2. The set product of a family of sets $\left\{E_{t}\right\}_{t \in I}$ (cf. Definition 4.1), denoted by. $\Pi_{\iota \in l} E_{\imath}$, is the set of all sets $\left\{x_{\imath} \mid x_{\imath} \in E_{\iota}\right\}_{\iota \in I \text {. }}$. This set product is often called the Cartesian product of the family of sets.

As in Definition 4.1, the set I, called the indexing set, can be any set. One very important such set is $I=\{1,2\}$. Letting $E_{1}=S$ and $E_{2}=T$, we may say that the set product of S and T, denoted by $S \times T$, is the set of all ordered pairs, (x, y), where $x \in S$ and $y \in T$.

Problem 4.1. Let $H=\{a, b, c\}, K=\{d, e\}$. Give all the elements of $H \times K$. How many distinct elements are there?

Problem 4.2. For H as in Problem 4.1, find $H \times H$, and determine the number of distinct elements.

The reader has, in his previous experience, encountered such processes as addition, multiplication, subtraction, division, exponentiation, etc. These processes are such that given two numbers in a specified order, there is assigned to them, except in a few special cases, another number. We wish to give an abstract formulation of this, and do so in the next definition.

Drfinition 4.3. A law of internal composition between elements of a set S, is a mapping of a part A of $S \times S$ into S. For a par-
licular element $\left(r_{1} r_{z}\right) \in A$ the image under iths mipping is called the composite ef Σ_{1} and s_{2} under this law if $A=S \times S$ the law is sad to be defined elerg, here and the sct S is sad to be closed with respect to (or under) this law of composition (Sometimes if $A-S \times S$ such a liw is citled a biniry operition)

Example 4 I Let $\kappa=\{d e\}$ ind j et a be the following map
 $=e$ Usuall\} the composite of two elements is represented by using 7 symbol for the law placed between the two elements Thus in th s eqse of we use O to denote the Jiw of composition determoned by a we have $d \circ d=d d O e-e c \circ d=d e \circ r-e$

Example 42 Another liw of compositon for λ is determined by the mapping β in follows $(d d) \beta=c(d c) \beta-d$ ($c(d) \beta-d$ (e e) $\beta=c$ By Definition 3^{*} these mappings α and β are different If we denote the composite under β by \square we bave $d[\square]-c$ $d \square c-d$ \& $\square d=d$ c $\square \varepsilon$ -

Exantple 43 A law of composition for $H=\left\{\begin{array}{lll}a & b & c\end{array}\right\}$ is deter mined by the mipping y as follous (a a)y-b (ab)y-c
 (b b) $\begin{aligned}-a & \text { (c } \quad \text { (}) \gamma-\text {, Thus of ue let } \Delta \text { denote the law of com }\end{aligned}$ position determined by γ we have $a \Delta a-b a \Delta b-b \Delta a=c$ $a \Delta c-a \Delta t=b \quad b \Delta t-<\Delta b=a \quad \Delta t-c$

Problem 43 Give two other laws of composition defined everywhere in the above set λ

Problem 44 Give another law of composition defined every where in the gbove set $\|$

Problem 45 Lei U be as defined previously (following Problem 2 1) and let P be the set of all subsets of U Verify in a few cuses that union and intersection are both laws of intemal composi tion defined everywhere in P

Problem 46 Let \boldsymbol{U} be any set and let \boldsymbol{P} be the set of all subsets of U Prove that U and \cap are laws of internal composition defined everywhere in \boldsymbol{P}

5 PROPERTIES OF LAWS OF INTERNAL COMPOSITION

Commutativitr The reader has probably noticed that in Example $41 d O e=e$ whule $e O d-d$ Thus the order of the two
elements in the composite is of considerable importance. Often, however, the order does not matter, and, in that case, we have a special name to describe the law.

Definition 5.1. If \square is a law of internal composition defined in a set S and if, whenever $a \square b$ is defined, for $a, b \in S$, $a \square b$ $=b \square a$, then and only then the law \square is called commutative.

Problem 5.1. Examine the laws of Examples 4.2 and 4.3 and those you gave in Problems 4.3 and 4.4 for commutativity.

Problem 5.2. Prove that U and \cap are both commutative (cf. Problem 4.6).

Associativity. As we have defined a law of composition, we can apparently only find the composite of two elements. If we write, purely formally, $a \square b \square c$ for an arbitrary law \square of internal composition, this expression as it stands is meaningless. We could, however, find the composite of a and b, let it be d, and then find the composite of d and c. Or we could find the composite of b and c, let it be e, and then find the composite of a and e. That is, we form the composite of two adjacent elements and then the composite of that with the thud. It is customary to use some sort of grouping symbols, such as parentheses, brackets, braces, etc., to indicate which composite is to be found first. The one to be found first is always the one enclosed by the parentheses or other such symbols. Thus we write the two cases discussed above as ($a \square b$) $\square c$ and $a \square(b \square c$), respectively. The reader is undoubtedly familiar with the statement that these last two expressions are equal. This is not always the case and we use a special name to describe the law involved when it is.

Definition 5.2. If \square is a law of internal composition defined in a set S and if, whenever $(a \square b) \square c$ and $a \square(b \square c)$ are both defined, $a, b, c \in S$, we have $(a \square b) \square c=a \square(b \square c)$, then and only then is the law \square called associative.

To test whether or not a law is associative requires considering the equation in Definition 5.2 for all possible choices of a, b, c. In general, this may be rather difficult or, in some cases, not difficult but quite tedious. For instance, in Example 4.3, there are 27 cases to be considered. For the other examples in the same paragraph, only eight cases are present.

Problem 5.3. Determine whether or not the law of Example 4.1 is associative.

Proslent 54 Prove that U and \cap tre associditive

Distributivity The reader is fomilar from his previous math emonic il expenence with sets in which two or more laws of internal composition are defined We bive alrezdy had a few such examples such is the sets H and k of Section 4 Also U and \cap are twodifferent laws of composition defined everywhere in the set of all subsets of a given set It is natural to consider relations between two or more such laws Probably the most importint such relationship is that considered in the next defintion

Definition 53 If and O we two laws of internal composi ton defined in a set S and $f f$ whenever $a \square(b \bigcirc c)$ and $(a \square b)$ O (a■c) are both defined in S abceS $a \square(b O c)=(a \square b)$ O (a[a) then ind only then is the law \square called left distributue with respect to 0

In i sumular minner we can define right distributivity by staring with (bOc) Da (This is left as 1 problem)

If \square is commutative then \square is leff disinbutive with respect to \bigcirc if and only if $[$ is right distrobutive with respect to O Then we may say merely distributive

Proberm \& 5 Give the full defintion of right distributivity of \square with respect to 0

Problemt 56 State the conditions for nght and left distribu tivity of O with respect to \square

Probleat 57 Determine whether or not either of the laws of Examples 41 and $4^{\text {t }}$ is distributive with tespect to the other

Problent 58 Prove that U is distrbutive with respect to \cap and that \cap is disiributive with respect to U

6 THE NATURAL NUMBERS

There is one particular mathematical system of such fundamental importance that it becomes very inconvenuent and cumbersome to attempt to proceed mutch further wathout having it avalable for our ute Accordingly we shall now develop this system and its most importani propertues Occassonally we shall mterrupt this develop ment to consider some general concepts

Definition 61 The set N is the set of all natural numbers \Leftrightarrow (1) $\exists \mathrm{l} \in N$
(2) $a \in N$ has a unique successor, $a^{+} \in N$. The element a is called the antecedent of a^{+}.
(3) I has no antecedent
(4) $\left(a, b \in N, a^{+}=b^{+}\right) \Rightarrow(a=b)$
(5) if M is a subset of N with the following properties: (i) $1 \in M$; (ii) whenever $a \in M$, then $a^{+} \in M$; then $M=N$.

The conditions given in Definition 6.1 are called Peano's Axioms or Peano's Postulates. Condition (5) is called the Axiom of Mathematical Induction, or merely the Induction Axiom.

Presently we are going to define two laws of internal composition in the set N and prove various important properties of these laws. In doing so, since this is a particular set, we shall use extensively the particular properties it possesses. First, however, we prove a result whose proof is very easy. To help the reader understand it, we point out that the theorem implies that the only element of N which does not have an antecedent is the element 1 , and that the proof uses Axiom (5). The set M used in the proof is slightly unusual but is of a type occasionally useful.

Theorem 6.1. $(\lambda \in N, x \neq 1) \Rightarrow\left(\exists y \in N \ni x=y^{+}\right)$.
Proof: Let $M=\left\{x \mid x \in N\right.$ and $\left(x=1\right.$ or $\left.\left.\exists y \in N \ni x=y^{+}\right)\right\}$. Then by definition of $M, 1 \in M$. Now let $x \in M$; then $x^{+} \in M$ since x^{+}is the successor of x. Hence, whenever $x \in M$, then $x^{+} \in M$. Therefore, by Axiom 5, $M=N$.

Problem 6.1. Prove that $\forall a \in N, a^{+} \neq a$. [Hint: consider $\left(a^{+}\right)^{+}$.]

7. ADDITION OF NATURAL NUMBERS

The method used in giving the next definition is often called definition by induction or by recursion. We define the concept for the natural number 1. Then, for each natural number x for which the concept has already been defined, we define it for x^{+}. The reader might refer back to Definitions 3.1, 4.1.4.2, and Theorem 6.1 to verify that what we do does define a law of internal composition in N.

Definition 7.1. (Definition of Addition of Natural Numbers) $a . b \in N \Rightarrow$
(1) $a+1=a^{+}$,
(2) $a+b^{+}=(a+b)^{+}$.

Theorem 7.1. N is closed under addition.

Proof By Defintion 42 we must show that the mapping of Definition 71 is a mipping of $\mathbf{N} \times \boldsymbol{N}$ into N Let $a \in N$ If we can show that $\forall b \in N a+b$ is defined und $a+b \in N$ we shall have proved the theorem

Let $17=\{b \mid b \in N \quad a+b$ is defined ind $a+b \in N\} \quad B y$ (1) of Defintion $71 \quad I \in M$ since $a+1=a^{+} \in N$ let $b \in W$ ie $a+b \in V$ Then hy (2) of Defintion 7 I $a+b=(a+b)^{+} \in N$ Therefore $(b \in M) \Rightarrow\left(b \in M^{f}\right)$ Therefore by Axiom (S) $\Lambda=M$

Theorem 72 Addition in N is associative

Pronf Let $a b \in N$ If we can show that $V \in \in N(a+b)$ $+c=a+(b+c)$ we shall hive established the theorem

Let $M-\{c\{c \in N$ and $(a+b)+a=a+(b+c)\}$ Now $(a+b)+1-(a+b)=a+b-a+(I+1)$ Therefore $\quad\{\in M$ Now let $\in \in M$ le $(a+b)+a-a+(b+c)$ Then $(a+b)+c$ $-[(a+b)+c]=a+(b+c)-a+(b+c) \Rightarrow$ b $\in M$ There fore $(k \in V) \Rightarrow(c \in M)$ Therefore $v-N$

Theorem 73 Add uon in N is commutditive

Probleat 71 Prove Theorem 73 (Hint first prove by in duction on a that $a+1=1+a$ then use the as the first step in the inductuon on b to prove th it $a+b-b+a)$

Problem 72 Prove that $(a \in N 1 \Rightarrow(a \neq a+b)$

8 THE CANCELLATION LAW

We now consider another example
Example 81 A law of composition for the set $L-\{a b c\}$ is defined by the mapping $\forall x, \in L(x,) \delta=a$ If we denote this law by ∇ we have $x \nabla y-a \forall x$ i $\in L$. The law ∇ is obvously commutative and assocrative and we have in particular $a \nabla b-a$ $a \nabla c=a$ That is,$\nabla b-a \nabla c$ but $b \neq c$ This is not the case with most laws of composition with which the reader has had previous acquantance The more familiar case as the one covered in the next definition

Definition 8 let be a law of internal composition de fined in a set 5 Then the ieft canceftanan ton for D holds for the element $a \in S \Leftrightarrow[\forall x) \in S(a \square x=a \square y) \Rightarrow(x-y)]$

In a simular manner we can define the night cancellation liw if
both right and left cancellation laws hold, then we say simply that the cancellation law holds. Of course, if \square is commutative, the one will hold if and only if the other does.

Problem 8.1. Examine whether or not the cancellation laws hold for the examples in Section 4.

Problem 8.2. Give another example in which a cancellation law does not hold.

ThEOREM 8.1. The cancellation law holds for addition and all elements of N.

Proof: We must show that $\forall a, b, c \in N, a+c=b+c \Rightarrow$ $a=b$.

Let $M=\{c \mid c \in N$ and $(\forall a, b \in N, a+c=b+c \Rightarrow a=b)\}$. Then $I \in M$, since $a+1=a^{+}$and $b+1=b^{+}$by Definition 7.1 and $a^{+}=b^{+} \Rightarrow a=b$ by Axiom 4 of Definition 6.1.

Let $c \in M$, and let $a+c^{+}=b+c^{+}$. Then $a+(c+1)=b$ $+(c+1)$, by Definition 7.1. So, $(a+c)+1=(b+c)+1$ by Theorem 7.2: therefore, since $l \in M, a+c=b+c$. Hence, since $c \in M$, $a=b$. Thus $a+c^{+}=b+c^{+} \Rightarrow a=b$. Therefore, $c^{+} \in M$ whenever $c \in M$. Therefore, $M=N$.

Problem 8.3. Prove, without using Theorem 8.1, that $\forall a, b, c$ $\in N, a \neq b \Rightarrow a+c \neq b+c$.

Problem 8.4. Prove that Theorem 8.1 is equivalent to the statement of Problem 8.3.

Theorem 8.2. (Law of Trichotomy for N.) $a, b \in \mathrm{~N} \Rightarrow$ exactly one of the following statements holds:
(1) $a=b$
(2) $\exists c \in N \ni a=b+c$
(3) $\exists d \in N \ni b=a+d$.

Proof: First we establish that no two of these can hold simultaneously. By Problem 7.2, statements (1) and (2) cannot hold simultaneously, nor can statements (1) and (3). If statements (2) and (3) did hold, then we should have $b=(b+c)+d=b+(c+d)$, which is impossible (again by Problem 7.2). Therefore, no more than one of these three cases can hold for two elements $a, b \in N$.

Now we shall show that one case is always present. Let $a \in N$ and let $M=\{b \mid b \in N$ and one of the three cases holds for a and $b\}$.

Either $a=1$, or if $a \neq 1$, then by Theorem $6.1 \exists c \in N \ni a=c^{+}$,
ie $a=1+c$ Thus ether case (1) or (2) is present for $b=1$ There fore $1 \in M$

Now Iet $b \in M$ Then one of the three eases holds for $a b$ We shall consider each in turn and show that one of the three cases must hold for a and b^{+}
(1) $a=b$ Then $a^{+}=b^{+}$le $b^{+}=a+1$ So case (3) holds for a and b^{*}
(2) $3 t \in N \ni a=b+c$ We have two subcises to constider If $c=1$ then $a=b+1=b$ so we have case (1) for a and b^{+}If $c \neq 1$ then by Theorem 6 ! $\exists e \in N \ni c-c=1+e$ so we have $a=b+(1+c)=(b+1)+c=b^{+}+c$ and we have case (2) for a and b
(3) $3 d \in \mathcal{N} \exists b=a+d$ Then $b-(a+d)-(a+d)+1$ $-a+(d+1)$ ind so we h ave eqse (3) for a and b^{+}Therefore $b \in M t$ $\Rightarrow b \in M$ Therefore $M-N$

9 MULTIPLICATION OF NATURAI NUMBERS

Definition 91 IDefimtoon of Multpiteation of Natural Numbers) $a b \in N \Rightarrow$
(1) a 1-a
(2) $a \quad b-\left(\begin{array}{ll}a & b\end{array}\right)+a$

We shall frequently omt the symbol and understand that if two elements of N are written adjaeent to each other they are to be multuplied Further if in expression involves both addition and multu plication it is understood that if there are no parentheses or other symbols of inelusion the multuplications are to be performed before the additions Thus we write the fast expression in Definition 9 it as $a b+a$

Theorem 9 I N is closed under multipiciation
Problem 91 Prove Theorem 91 (cf proof of Theorem 71)
Tiferem 92 The left Distributive Law of Multiplication with respect to Addition holds in N

Proof By Defiriton 53 we must show that $v a c \in N$ $a(b+c)-a b+a c$

Let $a b \in N$ and let $M-\{c \mid c \in N$ and $a(b+c)=a b+a c\}$ Now $a(b+1)-a b-a b+a-a \quad b+a \quad 1$ Therefore $I \in M$ Now let $c \in M$ Then $a(b+c)=a(b+c)^{*}-a(b+c)+a=$ $(a b+a c)+a-a b+(a c+a)-a b+a c^{+} \quad$ Therefore $\quad c \in M \Rightarrow$ $c^{+} \in M$ Therefore $M=\boldsymbol{N}$

Theorem 9.3. Multiplication in N is associative.
Problem 9.2. Prove Theorem 9.3. [Hint: to prove $(a b) c$ $=a(b c)$, use induction on c, and in considering $(a b) c^{+}$, use Theorem 9.2.]

Lemma: $\quad a, b \in N \Rightarrow 1 \cdot a=a$ and $b^{+} \cdot a=b \cdot a+a$.
Problem 9.3. Prove the above Lemma. (Hint: use induction on a.)

Theorem 9.4. Multiplication in N is commutative.
Corollary: The Right Distributive Law of Multiplication with respect to Addition holds in N.

Problem 9.4. Prove Theorem 9.4. (Hint: use the Lemma.)
Problem 9.5. Prove the Corollary to Theorem 9.4 directly by using the method of the proof of Theorem 9.2.

10. RELATIONS

We are now goong to give a precise definition of what is meant abstractly by a relation. Two such relations are equality and inequality.

Definition 10.1. A relation R defined in a set S is a subset R of $S \times S$. We shall write $a R b \Leftrightarrow(a, b) \in R$.

Definition 10.2. (Properties possessed by some relations.) Let R be a relation defined in a set S. Then
(a) R is reflexive $\Leftrightarrow \forall a \in S, a R a$
(b) R is symmetric $\Leftrightarrow(a R b \Rightarrow b R a)$
(c) R is transitive \Leftrightarrow ($a R b$ and $b R c \Rightarrow a R c$).

Example 10.1. Let $K=\{d, e\}$. Then if $R=\{(d, d),(e, e)\}$, R is ordinary equality.

Example 10.2. Let $K=\{d, e\}$. Then if $R=\{(d, e),(e, d)\}$, R is symmetric, but not reflexive or transitive.

Example 10.3. Let $K=\{d, e\}$. Then if $R=\{(e, e)\}, R$ is symmetric and transitive, but not reflexive.

Definition 10.3. Let \square be a law of internal composition defined in a set S, and R a relation defined in S. Then R is left compatible with $\square \Leftrightarrow a, b \in S, \forall c \in S, a R b \Rightarrow(c \square a) R(c \square b) ; R$ is compatible $\because \mathrm{it} h \square \square a, b \in S, \forall c, d \in S,(a R b, c R d) \Rightarrow(a \square c) R$ $(b \square d)$.

Right compatibulity is defined in a simalar minner Further equal ity is compatible with tll laws of composition

Theorem 101 If \boldsymbol{R} is a transitive and reflexive relation de fined in a set S having a law of internal composition \square then R is com patible with $\square \Leftrightarrow R$ is both left and ribht compatible with \square

Problem 101 Define right compalibility
Problem 102 Prove Theorem 101
Problem 103 Determine of R of Example 102 is comp ituble with O of iltustrative Example 4 I

Probitas 104 Let $H-\left\{\begin{array}{ll}a & b\end{array}\right\}$ Find three relations defined in H each in turn having one but only one of the properties of Defins ton 102

I! INEQUALITY IN N

Defintion It 1 ab$\in \mathbb{a}>b \Leftrightarrow \operatorname{H}_{c} \in N \exists a-b+c$ $a<b \Leftrightarrow b>a \quad a \geqslant b \Leftrightarrow(a>b$ or $a-b) a \leqslant b \Leftrightarrow b \geqslant a$

Theorem !II abeN=exacil\} one of the following holds
(1) $a-b$
(2) $a>b$
(3) $a<b$

Proof This is Theorem 82 restated in terms of inequally
Tiseorem $112 \quad a>b$ is a transitive relation in N
Proof We must show $a b c \in N \Rightarrow(a>b \quad b>c \Rightarrow$ $a>c)$ Now $a>b \Rightarrow \exists d \in N \exists a=b+d b>c \Rightarrow \exists e \in N \exists b$ $=c+e$ Therefore $a=(c+e)+d-c+(e+d)$ by associativity and so $a><$ since $e+d \in N$ by Theorem 71

Theorem $113 \quad a>b$ is compatible with addition and with multuplication in N

In the next eight problems all letters represent natural numbers If in a problem one or more natural numbers must be excluded to have the general statement hold the reader is expected to state such exclusions

Problem 111 Prove $a+c>b+c \Rightarrow a>b$

Problem 11.2. Prove: $a>b \Rightarrow a \geqslant b+1$.
Problem 11.3. Prove: $a<b \Rightarrow a+1 \leqslant b$.
Problem 11.4. Prove: $\forall a \in N, a \geqslant 1$.
Problem 11.5. Prove: $a \in N \Rightarrow \neq j \in N \ni a<b<a+1$.
Problem 11.6. Prove: $a<b+1 \Rightarrow a \leqslant b$.
Problem 11.7. Prove: $a c>b c \Rightarrow a>b$.
Problem 11.8. Prove: $a, b \in N, a>b \Rightarrow \nexists c \in N \ni a+c$ $=b$.

Problem 11.9. Prove Theorem 11.3.
Problem 11.10. Prove Theorem 11.4 below.
Theorem 11.4. The cancellation law holds for multiplication and all elements of N.

Our final theorem of this chapter is equivalent to the statement that every nonempty set of natural numbers has a smallest number in it.

Theorem 11.5. Let L be a nonempty set of natural numbers. Then $\exists s_{0} \in L \ni \forall s \in L, s \geqslant s_{0}$.

Proof: Suppose that the theorem is false. Then for each $t \in L \exists s_{t} \in L \ni s_{t}<t$. Let $M=\{x \mid x \in N$ and $x \notin L$ and $x \leqslant s$, $\forall s \in L\}$. Then $1 \in M$, since $1 \leqslant n$ by Problem $11.4, \forall n \in N$ and if $1 \in L$, there would be, by the condition at the beginning of the proof (implied by the supposition of falsity), a natural number $s_{1}<1$.

Let $x \in M$. Then by Problem 11.3, $\lambda^{+}=x+1 \leqslant s, \forall s \in L$. If $x+1 \in L$, then $\exists y \in L \ni y<\lambda+1$, i.e., $y \leqslant x$ by Problem 11.6. But since $x \in M, x<y$ since $y \in L$. Therefore, $x^{+} \notin L$ so $x^{+} \in M$. Therefore, $x \in M \Rightarrow x^{+} \in M$. Therefore, $M=N$ and L must be empty, contrary to hypothesis. Hence, our supposition is false and the theorem is true.

Problem 11.11. Prove that if a set of natural numbers L satisfies: (1) $n \in L$. (2) $(\lambda \in L, s>n) \Rightarrow x^{+} \in L$, then L contains the set of all natural numbers $\geqslant n$.

Problem 11.12. Prove that if a set of natural numbers L satisfies: (1) $1 \in L$, (2) $(a \in L, \forall a<x) \Rightarrow x \in L$, then $L=N$.

Chapter 2 Semıgroups, Equivalence

 Relations, and Rational IntegersIn this chapter we consider semigroups and begin our study of groups To do this conveniently we consider some further propertes of mappings strece certan properties of many systems such as the assoctat ve laws can be proved most easily by reluting them to a set of mopp ngs

Then we introduce a gemersization of the dea of equality an equivalence relation which is of extreme importance in a great many of our subsequent developments We also introduce the concept of isomorphism which tells us when two mathematical systems are abstractly identic il we consder the formation of new systems from old ones by taking set products ind quotient sets with respect to equivalence relations also considered are the me ins by which laws of composition in the old wystems induce laws of composition in the new ones

Fin illy we apply the ideas developed thus far to derive the system of the rational integers and we consider congruence modulo m in thit system

1 SENIGROUPS

In Chapter 1 we cons dered vanous general properties of sets and developed the import int properties of the partucular mithematical system of the natural numbers We shall not at present define a general mathematue it system but we now consider a very elementary mathe matteal system of a pener il kind

Dffinition I I A semgro ap is a nonempty set S dnd an assa crative law of internal composition defined everywhere in S

We shall for most of this chapter denote this law by \square and denote the semigroup by $\langle S D\rangle$ Oceasionally if the law of compo shon is clear from the context we may denote the semgroup by S

If \square is commutative, then we shall say that the semigroup $\langle S ; \square\rangle$ is commutative.

It should be emphasized that a semigroup is a set and a law of composition. Often we encounter sets with two or more laws of composition and it may be that the set and each of these laws form different semigroups. For example, $\langle N:+\rangle$ is a semigroup; also $\langle N ; \cdot\rangle$ is a semigroup and the two semigroups are different. For brevity, we often shall refer to these semigroups as the additive and multiplicative semigroups of N, respectively.

Problem 1.1. Let P be the set of all subsets of a nonempty set S.
(a) Prove that P and \cup form a semigroup.
(b) Prove that P and \cap form a semigroup.

Problem 1.2. Find three subsets of N which together with one of the laws of composition defined in N form semigroups.

2. PRODUCTS OF MAPPINGS

In order to have some easy and informative examples of semigroups and their properties, we shall now consider a law of composition for mappings and investıgate the important properties of this law. Henceforth, many of these results will be of the utmost importance.

In order to illustrate the definitions and theorems given, we shall give first a particular set of mappings. We let $H=\{a, b, c\}$ and we let $\mathscr{\oiint}_{3}$ be the set of all mappings of H into itself. For any set with a small number of elements, such as H, one convenient way of giving such a mapping is to write two rows: in the upper put all the elements of H, and in the lower below each element of H (in the upper row) write its image. Thus, some of the mappings of \AA_{3} are:

$$
\begin{aligned}
\iota & =\binom{a b c}{a b c}, \alpha=\binom{a b c}{b c a}, \beta=\binom{a b c}{c a b}, \gamma=\binom{a b c}{a c b}, \delta=\binom{a b c}{c b a}, \\
\epsilon & =\binom{a b c}{b a c}, \zeta=\binom{a b c}{a a a}, \eta=\binom{a b c}{a a b}, \theta=\binom{a b c}{a b a}, \kappa=\binom{a b c}{c a a}, \\
\lambda & =\binom{a b c}{c c c}, \mu=\binom{a b c}{b a a}, \sigma=\binom{a b c}{b b b}, \tau=\binom{a b c}{c c c} .
\end{aligned}
$$

The reader may easily complete the list. There are 27 such mappings as a moment's reflection will disclose.

The above method of exhibiting a mapping is not practical for
a set having infintely many clements such ds N However of the set has one or more lows of composition defined in it such as N does a very useful way of giving a mappong is by means of a formula Thus one mapping call it a of N into itself is given by $x a=a x+b$ where $a b \in N$ this gives the imrge sa of each element of N

Definition $21 \quad 1$ et α be i mapping of a set S into a set T and β be a mapping of T into a set U Then the product $\alpha \beta$ is the mapping of S into U defined by $x(\alpha \beta)-(x, x) \beta / x \in S$

Example 21 For the partucilar ar γ defined above (map pings of H into itself $)$ we have $a(\alpha \gamma)=(a d) y=b y-c \quad b(\infty \gamma)$ $-(b \alpha) \gamma=c \gamma=b \quad c(\alpha y)=(c a) y=a y=a \quad$ Thus by Defintion 32 of Chapter I ay- δ Or more compactly this product is $a \gamma-\binom{a b c}{b_{1} a}\binom{a b c}{a x b}=\binom{a b c}{b, a}\binom{b r a}{c b a}=\binom{a b c}{a b a}=\delta$ sinee clearly $\binom{a b c}{a b b}$ and $\binom{b r a}{b a}$ are the same mapping

Prodlem 21 Find an mad no
Problem 22 Show that $\zeta \eta$ and $\zeta \gamma$ we both equal to ζ
Problem 23 Find on show that the product of a nnd any mapping $\xi \in \mathcal{S}_{3}$ in either order is the mapping ξ

Probient $4 \quad$ Find $a \beta$ and βa where α and β are the two mappings of N itself defined by $x \alpha=x+2$ mad $x \beta=3 r+4$

Theorem 21 Let a be a mapping of S into $T \beta$ a mapping of T into U y a mapeing of U into I Then $(\alpha \beta) \gamma-\alpha(\beta \gamma)$

Proof Let $x \in S$ We apply Defintion 21 repeatedly and find that $(\alpha \beta) \gamma$ is the mapping $\geqslant x[(\alpha \beta) \gamma]-[x(\alpha \beta)] \gamma-[(x \alpha) \beta] \gamma$ $\forall x \in S \alpha(\beta \gamma)$ is the mapping $\exists x[\alpha(\beta \gamma)]-(x \alpha)(\beta \gamma)=\{(x \alpha) \beta] \gamma$ $\forall x \in S$ Therefore by Defintion 32 of Chapter I ($\alpha \beta$) y^{-} $\boldsymbol{a}(\beta \gamma)$

Problem 25 For the mappngs of sf, find (a) ate δ) and ($\alpha \epsilon$) δ (b) $\beta(\eta \theta)$ and ($\beta \boldsymbol{\eta}) \theta$

Problem 26 For ar $\boldsymbol{\beta}$ as in Problem 24 and $\boldsymbol{\gamma}$ defined by $x \gamma-5 \gamma+2$ find $\alpha(\beta \gamma)$ and $(\alpha \beta) \gamma$

Theorem 22 The set of all mappings of a nonemply set E into uself and the product as defined in Definition 21 form a semigroup

Problem 27 Prove Theorem 22

3. THE ASSOCIATIVE LAW GENERALIZED

Thus far we have considered composites of not more than three elements of the system under consideration. For a composite of three elements, $a \square b \square c$, we have the associative law which tells us that whether we combine a and b first, or b and c, the ultimate result is the same. If we have more than three elements, the situation becomes more complicated. For example, with four elements, a, b, c, d, we can combine them in different manners as follows: $[(a \square b) \square c] \square d$, $(a \square b) \square(c \square d), a \square[b \square(c \square d)]$. The more elements there are to be combined, the more different ways there are to combine them. However, it is a remarkable fact that all the different ways give the same result as long as the associative law holds for merely any three elements. To prove this last statement would require an extremely detailed analysis of the combinatorial possibilities, which is beyond the scope of this book and not needed in the book. We shall merely prove a theorem (Theorem 3.1) which covers a very important case and which is illustrative of the theorem needed in the general case. To carry out the proof we shall define the composite of n elements in one particular way and then show that certain other groupings give the same result. First, however, we make a definition which will also be useful later

Definition 3.1. Let $n \in N$. Then a finite sequence of elements of a set E is $\left\{a_{1}\right\}_{1=1,2}, \quad, n$ as defined in Definition 4.2 of Chapter I, with order defined as: $a_{1}<a_{3} \Leftrightarrow i<j$; or, the set $\left\{a_{c_{1}}\right\}_{1=1,2}$, ,n where $c_{1} \in N$ and $a_{c_{1}}<a_{c_{j}} \Leftrightarrow i<j$.

Now we are ready to define a particular composite of a finite sequence of elements and do it by specifying that each new element comes on the left and is combined with the composite of the others aheady combined. We could do it equally well on the right. The definition is of course by induction.

Definition 3.2. Let $\left\{a_{1}\right\}_{i=1.2}$, .n be a finite sequence of elements from the semigroup $\langle S ; \square\rangle, n \in N$. Then $\square_{i=k}^{h} a_{i}=a_{h}, \forall k$ $\leqslant n$, and $\square_{i=1}^{n} a_{1}=a_{1} \square\left(\square \square_{i=2}^{n} a_{1}\right)$, for $n \geqslant 1$.

If $\left\{a_{c_{j}}\right\}_{\rho=1,2 . \text {.. .m }}$ is a finite sequence of elements of the semigroup $\langle S: \square\rangle$, then $\square_{j=1}^{\prime \prime} a_{c_{j}}=\square_{j=1}^{\prime \prime \prime} b_{j}$, where $b_{j}=a_{c_{j}}$.

This last patt covers the case of composites in which the first factor on the left does not have the subscript 1 , and other cases.

In case $\square=+$, then $\square_{i=1}^{n} a_{i}$ is usually written $\sum_{t=1}^{n} a_{i}$. In case $\square=\cdot$, then $\square_{i=1}^{n} a_{1}$ is usually written $\prod_{t=1}^{n} a_{2}$.

The collecting of factors in this composite means that for four
elements we the the grouping as $a_{1} \square\left[a_{2} \square\left(a_{3}[] a_{4}\right)\right]$
If we hdve a composite ($\left.a_{1} \square a_{2}\right) \square\left(a_{3} \sqcap a_{4} \square a_{5}\right) \square a_{6} \square$ $\left(a_{7} \square a_{n}\right)$ this could be written as a composite of four elements $b_{1} \square b_{2} \square b_{3} \square b_{4}$ where $b_{1}=a_{1} \square a_{2} \quad b_{2}=a_{3}[] a_{4} \square a_{5} b_{3}=a_{6}$ $b_{4}=a_{T} \square a_{4}$ This illustrates the notaion of the nexl theorem
 $\square_{i=i_{k}+1}$ a be dny grouping of the elements in the compasite $\square_{i-1} a_{i}$ where the $\mu_{\mathrm{f}} \in$ ($S \square$) which is a semigroup Then $\square_{i=1}^{n} a_{f}=\square_{j=1}^{k} b_{j}$

Proof We proceed by mduction on n The theorem is ob viously true if $n=1$ and we shall suppose it true for any number of " less than a (cf Problem 1112 of Chapter i) We distingush two cases
(1) $A_{1}=1$ Then $b_{1}=a_{t}$ Then $\square_{1, ~}^{k}, b_{1}=b_{1} \square\left(\square_{j}^{k}, b_{j}\right)=a_{i} \square$ ($\square_{i=2}^{k} b$) By induction hypothesis $\square_{i=x}^{k} b_{1}=\square_{i=f}^{n} a_{i}$ Therefore, by Definition $32 \square_{1}^{\hat{N}, ~} b_{2}=\square_{1}^{*} a$
(2) $t_{1}>1$ Then let $b_{1}=\square$-a d_{1} Then by induction hypothesis $\left.b_{1} \square(\square\}_{i=2} b_{3}\right)=\left(\square a_{i=2} a_{1}\right)$ Now by the associative law and Defi nition $32 a_{1} \square\left(b_{1} \square\left(\square_{i}^{*} b_{j}\right)\right)=\left(a_{1} \square b_{1}\right) \square\left(\square_{i=2}^{k} b_{j}\right)=b_{1} \square$ $\left(\square^{*}=2, b_{1}\right)=\square_{1}^{k}=1, b$, But by the induction hypothesis and Defimition $32 a_{1} \square\left(b_{1} \square\left(\square_{j=2}^{k} b_{j}\right)=a, \square\left(\square_{i=2}^{*} a\right)=\square_{1=1}^{*} a \quad\right.$ Therefore $\square_{0,1}^{n} a=\square_{j=1}^{s} b_{j}$

Problem 31 In the semigroup \mathcal{S}_{3} find the product $\alpha y \eta \beta$ in three different ways How do we know that $\boldsymbol{\phi}^{\prime}$ is a semigroup?

Problem 32 Using a β of Problem $24 y$ of Problem 26 and δ defined by $x \delta-4 x+1 \quad \forall x \in N$ find $\alpha \beta y \delta$ in two different ways

Definition 33 In Defination 32 if $a_{1}=a_{2}$ al $\quad-n_{n}-a$ we write $\square^{n}=1 a_{1}=\sigma^{*}$ unless the law of composition \square is addition in which case we write (usually) $D_{i=1}^{n} a_{1}=n a$ In etther case n is called an exponent multuptreative or additive as the case may be a^{n} 1s called a poner of a

In Problems 3334 and $35 a b \in(S \square)$ a semgroup and $a \square b-b \square a$ (Use induction to the proofs)

Problem 33 Prove $a^{n} \square a^{n}=a^{n}$ *
Problem 34 Ptove $\left(a^{*}\right)^{m}=a^{\text {m }}$
Problem 35 Prove $(a \square b)=a^{n} \square b^{n}$
Problem 36 For α_{3} find $\alpha^{3} \boldsymbol{t}^{2} \boldsymbol{\gamma}^{4} \zeta \boldsymbol{\eta}^{2} \theta$

Problem 3.7. Find α^{3} for α of Problem 2.4.
Problem 3.8. Prove: $a \in\langle S ; \square\rangle$, a semigroup, $x=a^{h}, y=a^{3}$, $h, J \in N \Rightarrow \lambda \square y=y \square \lambda$.

Problem 3.9. For $E \in P$, for P of Problem 1.1, find E^{n} for $\square=\cup$ and $\square=\cap$.

4. SUBSEMIGROUPS

Frequently we shall have occasion to consider a subset of the set of elements in a semigroup, and it will be of interest to know if this subset and the original law of composition form a semigroup. To make this consideration formally precise we introduce the following definitions.

Definition 4.1. Let \square be a law of internal composition between elements of a set S (cf. Definition 4.2 of Chapter 1) defined on a subset A of $S \times S$; we shall call the law induced by \square on a subset T of S, that law of composition between elements of T defined on the set of $(1, y)$ of $T \times T \ni(x, y) \in A$ and $x \square y \in T$, and which is such that it makes the composite $\lambda \square y$ correspond to (x, y).

Definition 4.2. Let $\langle S ; \square\rangle$ be a semigroup, $T \subset S$, and \square_{1} the law of composition induced in T by \square. Then T and \square_{1} form a subsemigroup of $\langle S ; \square\rangle \Leftrightarrow\left\langle T ; \square_{1}\right\rangle$ is a semigroup.

It is vital to remember that to have a subset of a semigroup be a subsemigroup, the law of composition must be the same (i.e., it must be induced in the subset) as that of the larger set. For example, in N the set consisting of 1 and "." form a subsemigroup of $\langle N ; \cdot\rangle$, but, of course, not of $\langle N ;+\rangle$.

Sometimes, for brevity, we may say that T is a subsemigroup of the semigroup S, and by that we shall mean that the law of composition in T is understood to be as above.

In Pioblems 4.1 through 4.5 show that the given set of elements is a subsemıgroup of $\mathscr{\oiint}_{3}$. If an English letter is given, that letter is used in the future to refer to this subsemigroup.

Problem 4.1. $H: \zeta, \sigma, \tau$.
Problem 4.2. $\quad S_{3}: \iota, \alpha, \beta, \gamma, \delta, \epsilon$.
Problem 4.3. \quad.
Problem $4.4 \quad \iota, \alpha, \beta$.
Problem 4.5. All powers of any particular element of \AA_{3}.

Problem 46 Find three more subsemgroups of \oiint_{3}

5 NFUTRAL ELEMFNTS AND INVERSE ELEMENTS

In N the element I has the property that $a \quad 1=1 \quad a=a \quad \vee a \in N$ Since nothing happens to another element when 1 is combined with It by multiplication it is reasonable to consider the element I as neutral with respect to multipicetron In \mathcal{S}_{3} a has the same property We generilize this property in the next defination

Derinition 5 l Let (S ($)^{\text {) be a semgroup Then } \boldsymbol{r}_{L} \in S}$ $\left(e_{R} \in S\right)$ is a lefl (ruh hi) neutral elemen of $S \Leftrightarrow \forall a \in S e_{L} \square a=a$ $(a \square(1-a) \quad c \in S$ is a nourd ek ment of $S \Longleftrightarrow c$ is both a right and १ left neutral element of S

Theorem ¢ I If a semigroup his 1 neutral element the neutral element is unique

Problem 5 : Prove Theorem 51 (Hint let c f both be neu tral elements and show that $e-f$)

Problem 52 Give four examples of semigroups which have neutral elements

Problem 53 Give four examples of semigroups which do not have neutral elements

Problem 44 Show that $\zeta \sigma r$ of $/ /$ of Problem $4!$ are alt left neutral elements of H but that none is inght neutral elementhence that none is a neuryl element

In Problem $44 a \beta$-c and e is the neutral element of the semi grourp in this problem So in i sense β undoes α and might therefore be considered Inverse to a In Problem $42 \gamma \gamma-e$ and so γ is its own inverse We generalize thos

Definition 52 Let (5 D) be a semigroup with a neutral element e Then $a \in S$ his a leff (rghtitmerse $\leftrightarrow \exists b \in S(c \in S)$ $\exists b \square a=e(a \square c-c)$ The element $b(c)$ is called the fofl (n ($h t)$ merse of a The element $a \in S$ his an uncrse \Leftrightarrow it has a lefl inverse and a night inverse which 're equal

The inverse of a ts usually denoted by a unless the law of com position is addition and then it is denoted by a

ThEOREM SZ $a \in(S \square)$ a semgroup with i neutral ele ment has a left inverse b and a nght inverse $c \Rightarrow b-c$

Theorem 5.3. $a \in\langle S ; \square\rangle$, a semigroup with a neutral element, has an inverse \Rightarrow the inverse is unique.

Problem 5.5. Prove Theorem 5.2.
Problem 5.6. Prove Theorem 5.3.
Problem 5.7. Find the neutral elements (if any) and the elements which have inverses (if any) in $\langle N ;+\rangle$ and in $\langle N ; \cdot\rangle$.

Problem 5.8. Show that every element of S_{3} of Problem 4.2 has an inverse.

Problem 5.9. Show that the only elements of δ_{3} which have inverses are the elements of S_{3} (cf. Problem 5.8).

THEOREM 5.4. $a, b \in\langle S ; \square\rangle$, a semigroup with a neutral element, a^{-1}, b^{-1} exist $\Rightarrow(a \square b)^{-1}$ exists and $(a \square b)^{-1}=b^{-1} \square a^{-1}$.

THEOREM 5.5. In a semigroup with a neutral element, the left (right) cancellation law holds for each element which has a left (right) inverse.

Problem 5.10. Prove Theorem 5.4. (Hint: show that $b^{-1} \square a^{-1}$ is an inverse and apply Theorem 5.3.)

Problem 5.11. Generalize Theorem 5.4 to more than two factors.

Problem 5.12. Prove Theorem 5.5.
Problem 5.13. Using Theorem 5.5 and Problem 2.2, show that ζ of \oint_{3} does not have an inverse.

Problem 5.14. Find three other elements of \oiint_{3} which do not have inverses.

6. DEFINITION OF A GROUP

The mathematical system naturally suggested by the introduction of the concepts of neutral element and inverse is a group. We shall give three equivalent definitions of this very important system (and a fourth in a problem).

Definition 6.1a. A semigioup $\langle G: \square\rangle$, with a neutral element and an inverse for each element, is a group. The order of the group $\langle G: \square\rangle$ is the number of elements of G. A group (or semigroup) is called finite \Leftrightarrow it has only a finite number of elements.

Definition 6 lb A group is a sel of elements G and a law of internal composition \square which satisfy
(1) $\forall a b \in G \exists c \in G \exists a \square b=c$
(2) $\forall a b c \in G a \square(b \square c)=(a \square b) \square c$,
(3) $\boldsymbol{\text { 7 }} \in G \exists \int a \in G a \square e=c \square a=a$
(4) $\forall a \in G ป^{2} \in G$ Э $a^{1} \square a=a \square a^{1}=e$

Definition 6 le A group is a nonempty sel of elements G and 71 iw of internal composition [] which satisfy
(1) $\forall a b \in G$ G $\in G \ni a[\square b-c$
(2) $\forall a b c \in G \quad a 口(b \square c)=(a \square b) \square c$

Definitiov 62 A subgroup of a group G is a subsemigroup of C whach is a group

Theorem 61 A finite semugroup in which the cancellation law holds for e ich element is i group

Probeme 6 i Prove that Definitions 6 la 6 lb and 6 lc are equivalent (Hint the most difficult pirt of this is showing that Defi mution $6 \mathrm{lc} \Rightarrow$ Defintion 6 lb To do thes first show that for a pur ucular element a there exists a neutril element for "Then show that this neutral element for a is a neutr il element of the group)

Problem 6^{6} Prove Theorem 61 (Hint let $a_{1} a_{2} \quad a_{b}$ be the distunct elements of the semagroup Form the composites of all these by one of them and show that Definition 6 Ic holds)

Problem 63 Prove that a semigroup S which sitisfies the
 (2) $V_{a} \in S$ ₹ $a_{1} \quad \exists a_{1} \quad \square a=e_{3}$

Problem 64 Determine which of the semigroups so far con sidered are groups

Problem 65 Prove that the cancellation liw holds for every element in a group

Problem of Let S be a semigroup with a neutral element Prove that the set of all elements of S which have tnverses in S form a subsemgroup of S and that this semgroup is a group

Proslem 67 Prove that S_{7} of Problem 42 is a group

7 A THEOREM ABOUT MAPPINGS

Theorem 71 The set of all I-l mappings of a nonempty set
E onto itself and the law of composition of Definition 2.1 form a group.

Proof: We shall show that the conditions of Definition 6.1b are satisfied.
Condition 1. Let α, β be any two 1-1 mappings of E onto itself.
First, we shall show that $\alpha \beta$ is a mapping of E onto itself (it is of course a mapping of E into itself). Since α, β are mappings of E onto itself, given any $x^{\prime \prime} \in E, \exists x^{\prime} \in E \exists x^{\prime \prime}=x^{\prime} \beta$ and $\exists x \in E \ni x^{\prime}=x \alpha$. Then $x^{\prime \prime}=x^{\prime} \beta=(\lambda \alpha) \beta=x(\alpha \beta)$. So $\lambda^{\prime \prime}$ is the image of x under $\alpha \beta$. Therefore, $\alpha \beta$ is a mapping of E onto itself.

Secondly, we shall show that $\alpha \beta$ is a 1-1 mapping. Given $x^{\prime \prime} \in E$, from the above we know that $\exists x \in E \exists x^{\prime \prime}=\lambda(\alpha \beta)$. Suppose that for some $y \in E, \lambda^{\prime \prime}=y(\alpha \beta)$. Let $y^{\prime}=y \alpha$; then $x^{\prime \prime}=y^{\prime} \beta$. Since β is a 1-1 mapping, $y^{\prime}=x^{\prime}$, so $x^{\prime}=y \alpha$. Since α is a $1-1$ mapping, $x=y$. Therefore, $\alpha \beta$ is a 1-1 mapping.
Condition 2. This follows from Theorem 2.2.
Condition 3. We define ι by $\forall x \in E, x \iota=\lambda$. Then ι is obviously a 1-1 mapping of E onto itself. Now $\forall x \in E, x(\iota \alpha)=(x \iota) \alpha=\lambda \alpha \Rightarrow$ $\iota \alpha=\alpha$. Also $\lambda(\alpha \iota)=(\lambda \alpha) \iota=\lambda \alpha$, since $x \alpha \in E$. Therefore, $\alpha \iota=\iota$ $=\imath \alpha$. Therefore, ι is a neutral element.
Condition 4. Let α be any $1-1$ mapping of E onto itself. Let β be defined as follows: given $\lambda \in E, \lambda \beta$ is the element $x^{\prime} \in E$ determined by $x=\lambda^{\prime} \alpha$. (This λ^{\prime} exists since α is an onto mapping, and there is only one such x^{\prime} since α is a 1-1 mapping.) Then $x \beta$ is defined $\forall x \in E$ and so β is a mapping of E into itself.

Suppose $\exists x, y \in E \ni x^{\prime}=x \beta, x^{\prime}=y \beta$. Then $x=\lambda^{\prime} \alpha$ and $y=x^{\prime} \alpha$ and so $x=v$. Therefore, β is a $1-1$ mapping.

Next, given $\lambda^{\prime} \in E$, we wish to show that $\exists x \in E \exists x^{\prime}=x \beta$. Now $\lambda^{\prime}=x \beta \Leftrightarrow \lambda=x^{\prime} \alpha$. Since α is a mapping of E into itself, given $x^{\prime} \in E, \exists x \in E \exists x=x^{\prime} \alpha$ and so $x^{\prime}=x \beta$. Therefore, β is an onto mapping.

Lastly, this mapping β which we have established as a 1-1 mapping of E onto itself, is the inverse of α. For by proceeding as above for any $x \in E, x^{\prime}=x \beta$, we have $x(\beta \alpha)=(x \beta) \alpha=x^{\prime} \alpha=x=x \iota$. Also, for any $x^{\prime} \in E, x=x^{\prime} \alpha$, and so $x^{\prime}(\alpha \beta)=\left(x^{\prime} \alpha\right) \beta=x \beta=x^{\prime}=x^{\prime} \iota$. Therefore, $\beta \alpha=\alpha \beta=\iota$. Hence, β is the inverse of α.

Therefore, the set and the law of composition form a group.

8. EQUIVALENCE RELATIONS

Certam properties of relations were discussed in Section 10 of Chapter 1 . We now introduce a name for relations which possess some of
these properties
Definition 8 : A relaton R defined in a set S is an equir alence refation $\Leftrightarrow \boldsymbol{R}$ is reflexive symmetric and transituve

Thus for many purposes an equivalence relation acts like equabty which of course is a particular equivalence relation Any equivalence relation determines a separition of the set S into a collection of subsets of a kind which we now define

Definition 82 A partion 11 of a set \boldsymbol{S} is a collection of nonempty subsets such that
(1) S is the union of atl the sets of 11
(2) every two distinct sets of II are disjoint

Theorem 81 An cquivalence relation R defined in a non empty set S determines a partuion of S

Proor $\quad V_{a} \in S$ let $C_{n}-\{x \mid r \in S$ and $x R a\} \quad C_{n}$ is non empty since by reflexivity $n \in C_{a}$ Also sincea $\in C_{n} S$ is the untion of the C Finally let $C_{n} \cap C_{b} \neq \varnothing$ let $d \in C \cap C_{0}$ then $d R a$ $d R b$ Now let $: \in C_{a}$ Then,$R b b R d \Rightarrow\{R a$ by the symmetric and transitive propertes of R Thus : $\in C_{a}$ and 5о $C_{b} \subset C_{a}$ Sim larly $C_{n} \subset C_{b}$ Therefore $C_{0}-C_{0}$ Thus we buve established that euther $C_{n} \cap C_{0}-\varnothing$ or $C_{n}-C_{0}$ Therefore the distinct $C_{n} a \in S$ are disjoint Therefore the collection of all the distinct $\boldsymbol{C}_{\mathrm{a}}$ is a partition of S

The sets C_{a} are worthy of a name
Definition 83 (a) The sets of a partition of a set S deter mined by an equivalence relation R defimed in S are equmalence classes determined by R somettmes called equivalence classes modulo R
(b) The set of these equabience classes is called the quohent sef of S b) R and is writien S / R

An equivalence relation and a partition are essentially the same Theorem 81 goes halfwizy in estabhishing thes and the next theorem completes the process

Theorem 82 A partition \boldsymbol{I} of a nonemply set S delermines an equivalence relation R in S when R as defined by $(u R b \Leftrightarrow a b \in$ the same subset in II)

Problem 81 Prove Theorem 82

Problem 8.2. For the set H of Example 4.3 of Chapter 1, consider the partition $H=\{a\} \cup\{b, c\}$. Determine whether or not the equivalence relation determined by this partition is compatible with the law of composition given in the example.

Soon we are going to develop the system of the rational integers. To do this we shall find it convenient to use certain general methods which are useful in many developments. Among these methods are two by means of which we frequently obtain new algebraic systems from previously known ones. One of the methods uses the set product of Definition 4.1 of Chapter 1 , and the other uses quotient sets and equivalence relations. We now consider the first method.

9. SEMIGROUP PRODUCTS OF SEMIGROUPS

Definition 9.1. Let $(S ; \square\rangle$ and $\langle T ; \bigcirc$) be two semigroups (groups). Then the semigroup (group) product of $\langle S ; \square\rangle$ and $\langle T ; O\rangle$, written $S \times T$, is the set of all ordered pairs (s, t) where $s \in S$ and $t \in T$, with a law of internal composition Δ defined by $\left(s_{1}, t_{1}\right) \Delta$ $\left(s_{2}, t_{2}\right)=\left(s_{1} \square s_{2}, t_{1} \bigcirc t_{2}\right)$.

Theorem 9.1. The semigroup (group) product of two semigroups (groups) is a semigroup (group).

Example 9.1. Let $K_{1}=\{\iota, \alpha, \beta\}$ and $K_{2}=\{\iota, \gamma\}$, considered as subgroups of $\mathscr{\delta}_{3}$. Then the group product of these two groups consists of the elements $(\iota, \iota),(\iota, \gamma),(\alpha, \iota),(\alpha, \gamma),(\beta, \iota),(\beta, \gamma)$ with the composites of a few of these elements as follows: $(\iota, \gamma)(\beta, \gamma)=(\beta, \iota)$; $(\alpha, \gamma)(\beta, \iota)=(\iota, \gamma)$, etc. The group product is of course a group.

Example 9.2. We can consider $N \times N$ as a semigroup product in more than one way since there are two laws of composition defined in N. With addition, we have $(a, b)+(c, d)=(a+c, b+d)$ and with multiplication, $(a, b) \cdot(c, d)=(a c, b d)$. We shall presently consider rather extensively $N \times N$ with addition so defined but with a different law of multiplication.

Problem 9.1. Prove Theorem 9.1.
Problem 9.2. Let $K_{3}=\{\iota, \delta\}, K_{4}=\{\iota, \epsilon\}$, as in $\mathscr{\&}_{3}$. Find $K_{2} \times K_{3}, K_{2} \times K_{4}, K_{3} \times K_{4}$, where K_{2} is given in Example 9.1 above.

Problem 9.3. Find $K_{1} \times K_{1}$, where K_{1} is given in Example 9.1 above.

Problem 94 Find $\boldsymbol{K}_{2} \times \boldsymbol{K}_{2}$ with \boldsymbol{K}_{2} of Example 91
Problfa 95 Prove that if Ω, L are subsemgroups (subgroups) of two semproups (groups) $S T$ respectively then $K \times L$ ts a sub semigroup (subiroup) of $\$ \times T$

10 COMPOSITION TABLE OF A SEMIGROUP

By the compotition table of a semigroup we menn a rectingular array with eich column latbefled with one element of the semigroup each row libelled with ane element of the semugroup and the entry in the intersection of the row labelled x with the column labelled; being the composite $x \square$) The composition table of the subgroup K_{1} of d_{3} is given here

	\ddots	α	β
	1	α	β
α	A	β	1
β	β	1	α

Problem 101 Construct the composition table for $K_{2} \times K_{3}$ and $K_{2} \times K_{4}$ of Problem 92

Promiem 102 Construct the composition tole for the semu group consisting of the following mappings of $\left\{\begin{array}{lll}1 & b & \text { a } \\ d\end{array}\right\}$ into itself $\omega \omega \begin{gathered} \\ \\ \end{gathered}$: where $\omega=\binom{a b c}{b c d a}:-\binom{a b c d}{a b c d}$ Show th it it is a group

Problfa to 3 Construct the composition table for $K_{\mathrm{t}} \times \mathrm{N}_{2}$ of Example 91

Problem 104 Construct the composition table for S_{3} of Problem 42

It should be observed th it in the composition table of a group each element of the group appears ex actly once in euch row and ex actly once in each column This follows from Problem 65 This may not be the case in 9 semigroup Also in the composition table of a group or a semigroup if the elements we given th the sime order in the labelling row as in the labelling column then the law of composition of the group or semrgroup is commutative if ind only if the table is symmetric with respect to the dagonal running from upper left to lower right

11. HOMOMORPHISMS AND ISOMORPHISMS

In abstıact algebra we concern ourselves mainly with those properties of algebraic systems which depend on how the elements of a system combine with each other and we are usually not concerned with other, more concrete, properties of the elements. Thus we introduce a term, isomorphic, to denote two systems such that we can establish a $1-1$ correspondence between the elements so that corresponding elements combine similarly. Isomorphic systems, for many purposes, are considered identical. We now define this and make a generalization.

Definition 11.1. Let $\langle S ; \square\rangle$ and $\langle T ; O\rangle$ be two semigroups. Then a mapping α of S into T is a homomorphism of S into $T \Leftrightarrow \forall s_{1}, s_{2}$ $\in S,\left(s_{1} \square s_{2}\right) \alpha=\left(s_{1} \alpha\right) \bigcirc\left(s_{2} \alpha\right)$.

The mapping α is a homomorphism of $\langle S ; \square\rangle$ onto $\langle T ; \bigcirc\rangle \Leftrightarrow \alpha$ is a homomorphism of S into T, and α is an onto mapping. Here, we say that T is homomorphic to S. (We use this for brevity; when the laws of composition are understood. For completeness we should say $\langle T ; O\rangle$ is homomorphic to $\langle S: \square\rangle$.)

The homomorphism α 1s an isomorphism of S onto T, or an isomorphism between S and $T \Leftrightarrow \alpha$ is a $1-1$ mapping of S onto T. Then and only then we say that S and T are isomorphic.

A homomorphism of S into itself is called an endomorphism.
An isomorphism of S onto itself is called an automorphism.
Example 11.1. Consider $K_{2}=\{\iota, \gamma\}, K_{3}=\{\iota, \delta\}$, as subgroups of S_{3}. If we define the mapping A by $\iota A=\imath, \gamma A=\delta$, then A is an isomorphism between K_{2} and K_{3}. It is obviously a 1-1 mapping of K_{2} onto K_{3}. To establish the composition preserving property, we must consider all possible composites of two elements of K_{2} and show that each such composite is mapped onto the composite of the images undeı A. There are four such composites: $\iota \cdot \iota, \iota \cdot \gamma, \gamma \cdot \iota, \gamma \cdot \gamma$. They are equal to, respectively, $\iota, \gamma, \gamma, \iota$, and are mapped onto $\iota, \delta, \delta, \iota$. On the other hand, $(\iota A)(\iota A)=\iota \cdot \iota=\iota,(\iota A)(\gamma A)=\iota \cdot \delta=\delta,(\gamma A)(\iota A)$ $=\delta \cdot \imath=\delta$. $(\gamma A)(\gamma A)=\delta \cdot \delta=\iota$. Therefore, A is an isomorphism and K_{2} is isomorphic to K_{3}.

The method used in this example can become rather tedious. Another method, often more convenient in the case of systems with only a few elements, is to use the composition tables of the two systems. If we have two semigroups, each with n elements, which we wish to show are isomorphic, then let us arrange the composition tables as follows: in the i th position of the labelling row of the second semi-
group table place the clement which is the imige under i supposed isomorphism of the element in the ith plice of the labelling row of the first semgroup tible for $-12 \quad n$ operate \mathbf{t} a simular manner on the columns Then the supposed somorphesm will netually be an isomorphism af and only if e ich entry in the body of the second table is the image of the element in the same position in the first table in the case of groups with large numbers of elements usually the most prac tical way of establishong in isomorphism is by the use of formulae

Problem 111 Show that $\boldsymbol{K}_{z} \times \boldsymbol{K}_{1} K_{2} \times K_{4} K_{3} \times K_{4}$ of Prob lem 11 are isomorphic

Problem 112 Show that the group of Problem 102 is not 150morphic to any of the groups of Problem 11 :

Pronles il 3 Show that S_{7} of Problem 4 ' is not isomorphac to $K_{1} \times A_{3}$, of Problem 103

Prohleai 114 Prove if S is a semigroup homomorphie tiso morphel to T nd T is homomorphic (nomarghic) io U then S is homomorphe (somorphte) to U Use this to prove that the relation of being homomorphic or isomorphic is in equavalence relation in the set of all semugroups

Problemi II 9 Show that S_{1} of Problem 4) is homomorphic to K_{3} and K_{3} Note that the mappings giving these homomorphisms of S_{3} into K_{1} and K_{3} are endomorphisms of S_{9} since K_{1} and K_{3} are subgroups of S_{3} Show that S_{3} is not homomorphic to K_{1}

Prohlem il $6 \quad$ Show thit for $\alpha, \leftrightarrow \leftrightarrow \alpha \leftrightarrow \beta \beta \leftrightarrow \alpha$ is an日utomorphism (Note the symbol \rightarrow is used only for I I mappings)

Notice that in Problems II 7 through 11 II it is a homomorphism of a semugroup S into a semugroup T

Problem 117 Prove that Sa (cf Definition 31 of Chapter 1) and the law of composition of T form a subsemgroup of T

Problem II 8 Prove that if S has a neutral element e then $e \alpha$ is a neutral element for S_{x}

Problem II 9 Prove that of S has ineutral element and if $a \in S$ has an inverse (or a left or nght inverse) then that inverse must be mapped onto an element of T which is an inverse for ack

Problem II 10 If S is a group prove that $S \alpha$ is a subgroup of T

Problem 11.11. If T has a neutral element, prove that the set of all elements of S which are mapped onto that neutral element is a subsemigroup (subgroup if S is a group) of S.

Having the concept of isomorphism available we can now define precisely what we mean by extending an algebraic system in the case of semigroups.

Definition 11.2. The semigroup S is imbedded in the semigroup $U \Leftrightarrow \exists a$ subsemigroup T of $U \ni S$ and T are isomorphic. The semigroup U is called an extension of S.

Problem 11.12. Prove that if S and T are two semigroups with neutral elements, then S and T are both imbedded in $S \times T$.

12. INDUCING LAWS OF COMPOSITION IN QUOTIENT SETS

We are now going to consider the second method of extending algebraic systems as discussed at the end of Section 8, namely by means of taking quotient sets. The most vital condition is compatibility of the equivalence relation used in forming the quotient set, with the law or laws of composition in the original set.

Theorem 12.1. Let E be a set closed with respect to a law of internal composition \square, and let R be an equivalence relation defined in E and compatible (cf. Definition 10.3 of Chapter 1) with \square. Then a law of internal composition can be defined in E / R such that
(1) E / R is closed under $\bar{\square}$,
(2) for $A, B, C \in E / R, A \bar{\square} B=C \Leftrightarrow \forall a \in A, \forall b \in B, \exists c \in$ $C \ni a \square b=c$.
This law is said to be induced in E / R by \square of E.
Proof: To find $A \bar{\square} B$, for any $A, B \in E \mid R$, let $x \in A, y \in B$. Since E is closed under $\square, \exists z \in E \ni \lambda \square y=z$. Since E is the union of the sets comprising $E / R, \exists C \in E / R \ni z \in C$. Then we define $A \bar{\square} B=C$. Now we wish to show that C is independent of the particular x and y chosen from A and B, respectively. Let a, b be any elements of A, B. respectively. Then $\lambda R a$ and $y R b$. Now R is, by hypothesis, compatible with \square, and so $\lambda R a, y R b \Rightarrow(x \square y) R(a \square b)$ $\Rightarrow \approx R(a \square b) \Rightarrow a \square b \in C$. Thus, C is independent of the choice of the representatives of A and B, and so we have the final statement in the theorem.

Thieorfal 12? Under ibe conditions of Theorem 12 1, if ${ }^{2}$ is assocative, then $\overline{\mathrm{I}}$ is assoclative

Tifforem 123 Under the conditions of Thearem 12 I , if $[$ is commutative, then is commut tive

Tifforem 124 Under the conditions of Theorem 121, if E is closed under Δ, a second law of internal composition if R is com pitible with Δ and if Δ is left (right) distributive with respect to $[$ then if $\bar{\Delta}$ denotes the law induced in C / R by Δ we have $\bar{\Delta}$ as left (right) distributive wab respect to $\bar{\square}$

Problem 121 Prove Theorem 122
 Problem 122 Prove Theorem 12;
 Problem 123 Prove Theorem 124

Problem 124 Prove that under the conditons of Theorem 121 if E has a neutral element then E / R has a neutral element Consider inverses

We are going to consider $\mathrm{N} \times \mathrm{N}$ to obtasn the system of the rational integers hut the next result may just as well be stated under more general conditions so we do wo The reader mught for ease in following the proof think of S as N and of \square as +

Theorem 125 Lel ($S \square$) be a commutitive semagroup in wheck the cancellation taw hold, for each element and let $L=S \times S$ be the semigroup product of S with tiself Then $(a \quad b) R(c \quad d) \Leftrightarrow a \emptyset d$ $=b \square c$ is an equivalence relation defined in L and compatible with \square.

Proof First, we prove that R is an equavalence relation in L.
(1) R is reflexive since $a \square b=b \square a$, suce S is commutative
(2) R is symmetac since $a \square d=b \square$ $\square \Rightarrow \square b=d \square a$, sance S is commutative
(3) R is tramsitue ($a \quad b) R(c a)$ (c d)R(e $f) \Rightarrow a \square d=b \square c$, and $c \square f=d \square e$ Multuplying the first of these equations by f on the right and the second by b on the left we have $a \square d \square j=b \square c$ $\square f, b \square c \square f=b \square d \square e$ whence we have $a \square d \square f=b \square d \square e$ $\Rightarrow a \square f=b \square e$, by commutativity and cancellation law there fore, $(a, b) R(e f)$

Now to show compatibility $(a, b) R(c d) \Leftrightarrow a \square d=b \square c$ $(e, f) R(g, h) \Leftrightarrow e \square h=f \square g$ Now (a b) $\bar{\square}(e, f)=(a \square e b \square f)$, $(c, d) \bar{\square}(g, h)=(c \square g, d \square h)$ To demonstrate compatibilty we
must show that $(a, b) \bar{\square}(e, f) R(c, d) \bar{\square}(g, h)$. But this follows immediately from the last four equations above by commutativity and associativity.

Definition 12.1. For N considered as an additive (a multiplicative) semigroup, R of the above theorem for $N \times N$ will be denoted by R_{1} (by R_{2}).

Problem 12.5. For $R_{1}\left(R_{2}\right)$ as above, find several elements in the equivalence class containing (1,5). Show that $(7,4) R_{1}(3,6)$ for $i=1,2$.

Problem 12.6. Carry out the proof of Theorem 12.5 for $N \times N$ and addition; for $N \times N$ and multiplication.

We now state a theorem about $N \times N$, using a different multiplication, not the one induced by that in N.

Theorem 12.6. In $P=N \times N$, with N as an additive semigroup, we define $(a, b) \cdot(c, d)=(a c+b d, a d+b c)$. Then P is closed with respect to this law of composition and R_{1} is compatible with it.

Problem 12.7. Prove Theorem 12.6.

Problem 12.8. Prove: in $P^{\prime}=N \times N$, with N as a multiplicative semigroup, define $(a, b)+(c, d)=(a d+b c, b d)$; then P^{\prime} is closed with respect to this law of composition and R_{2} is compatible with it.

Problem 12.9. Prove the following generalization of Theorem 12.5.

Theorem 12.7. Let $\langle S ; \square\rangle$ be a commutative semigroup, S^{*} be the set of elements of S for which the cancellation law holds, $S^{\star} \neq \varnothing, M=S \times S^{*}$, the semigroup product. Then $(a, b) R(c, d) \Leftrightarrow$ $a \square d=b \square c$ is an equivalence relation defined in M and compatible with $\bar{\square}$, the law induced in $S \times S^{*}$ by \square, as in Definition 9.1.

In this chapter we shall apply the next theorem only to N, and so S^{*} will also be N. Thus the reader may think of this in reading the proof. We shall state and prove it in more general form.

Theorem 12.8. Let $\langle S: \square\rangle$ be a commutative semigroup, S^{*} the set of elements of S for which the cancellation law holds, S° nonempty. Then there exists a commutative semigroup T such that
(1) S is imbedded in T,
(2) T his ineutril element
(3) $x \in S^{*} \Rightarrow H x^{2} \in T$
(4) T is the smitlest semigroup hiving properties (1) (2) and (3)

Proor To quod needlessly compltcated not ituon we shall use $\square 10$ sndicate the law induced in $N \times N$ by \square and $\left\{\left(w^{2}\right)\right\}$ to denote the equivilence clis cont uning (4)

Let $T-\left(S \times S^{*}\right) / R$ where R is the equivalence ralation of Theo rem 127
(1) I et It be the set of all equivilence cidsses contaming all elemens $(\| \square, 1)$ where $a \in S$ IES* We shall prove that $\| \rightarrow$ $\left\{(\| \square), \mid \forall, \in S^{*}\right\}$ is in isomorphism

First we note thit $\operatorname{lil}\left(\mu \square_{1}\right.$ i) belong to the same equivalence
 the equitions hold since S as issociluve and commutative Now let $H_{1} \rightarrow\{(1, \square 1,1)\}$ and $H_{z} \rightarrow\left\{\left(u_{t} \square i_{2} i_{2}\right)\right\}$ ind suppose $\left.\left(H_{1} \square b_{1},\right)_{1}\right)$ $R\left(m_{1} \square 1 i_{2}\right)$ Then $u_{1} \square i_{3} \square i_{2}=1 \square \mu_{2} \square i_{2} \Rightarrow u-u_{2}$ since $1 i_{2} \in S^{*}$ Therefore the mapping is I and it is onto by defimtion

Thit $u \square u \rightarrow\left\{\left(u, \square i_{1}, 1\right)\right\} \square\left\{\left(A_{1} \square i_{2} i_{2}\right)\right\}$ where \square is the law induced in T by \square is obvoous Therefore ue have an isomorphism between W ind S ind since T is taemigroup S is imbedded in T
17) The equivalence class consuning (u u) for iny $n \in S^{*}$ is

 Therefore if " $E S^{*}$ its amage in T under the tsomorphism of part (1) of the proof has an inverse Hence by identifying " with that image " has an inverse in T
(4) Let V be the set of all equivalence classes which ire inverses of eiements of T correspondung to elements of S^{*} We shill show that condition (4) of the conclusion of the theorem holds by showing that every elment of T is the composite of an element of W and an element of V From this (4) will follow stnce any semigroup baving the first three properties must contain all these composites

Let $(a b)$ be any element of $S \times S^{*}$ and let $n \in S^{*}$ Then
 $a \square, \square \backsim \square b-b \square a \square 1 \square u$ since S is associative and commuta tive Therefore each equivalence cliss of T is the composite of an equivalence class of W suce $(a, \square$, is a representative of such a class ind in equivalence class of V since ($u \quad, \square b$) 15 a representa tive of such a class becuse $\boldsymbol{u} \boldsymbol{b} \in \boldsymbol{S}^{*}$

Corollary 12.1. If the cancellation law holds for every element of S, then the semigroup T, of Theorem 12.8 is a group.

Corollary 12.2. The additive semigroup of N can be imbedded in a group.

Problem 12.10. Go over the proof of Theorem 12.8 with N as S, addition as \square, and R_{1} as R; also with N as S, multiplication as \square, and R_{2} as R.

Theorem 12.9. The multiplication in $N \times N$, as defined in Theorem 12.6, is associative, commutative, and distributive with respect to the addition induced in $N \times N$ by addition in N. Further, the multiplication induced in $(N \times N) / R_{1}$ by this multiplication in $N \times N$ is associative, commutative, and distributive with respect to the addition in $(N \times N) / R_{1}$ induced by the addition in $N \times N$.

Problem 12.11. Prove Theorem 12.9. (Hint: use Theorems 12.1 through 12.4, and other results.)

13. DEFINITION OF THE RATIONAL INTEGERS

Definition 13.1. (The Rational Integers.) The additive group, $Z=(N \times N) / R_{1}$, whose existence is established by Theorem 12.8 (with $\square=+$) and Corollary 12.1, with multiplication defined in Theorem 12.6, is called the ring of rational integers. An element of Z is called a rational integer, sometimes, when the context is clear, merely an integer. The additive neutral element of Z will be denoted by 0 , and the additive inverse of $a \in Z$ by $-a$. Finally, for brevity we shall usually write $a-b$ for $a+(-b)$.

Theorem 13.1. The elements of Z and addition form a commutative group; the elements of Z and multiplication form a commutative semigroup with a neutral element, usually denoted by 1 ; the cancellation laws hold for addition for every element, and for multiplication for every nonzero element; multiplication is distributive with respect to addition: the additive semigroup of N and the multiplicative semigroup of N are imbedded in the additive and multiplicative (respectively) semigroups of Z.

Problem 13.1. Prove Theorem 13.1. (Most of the theorem has been proved. The cancellation laws and the imbedding statement have not. For the latter, use the mapping $a \leftrightarrow\{(a+1,1)\}, \forall a \in N$.)

Since by Theorem 13.1, N is imbedded in Z, we can refer to N as being contained in Z for all properties involving addition and multi-
plicution As for the less then relition we now generalize st to Z and in doang so leve anchanged all that we hid for N in this connection

Definition 132 For my $x \in Z \quad r$ is an equivalence class determined by in ordered pur (ab) $\in N \times N$ We shall say that x is / osime $\Leftrightarrow a>b$ and say thit r is megatie $\Leftrightarrow a<b$ If x is posi tive we urite $x>0$ of neg itive $:<0$ for my $x, \in Z$ we write $x>1 \leftrightarrow \mathrm{r}-\mathrm{y}>0 \mathrm{r} \geqslant \mathrm{z} \Leftrightarrow(\mathrm{r}>$) or $\mathrm{r}=\mathrm{y})$ I astly we shall use Z^{*} to denote the sct of all a $\in Z \exists>0$

Theorem 132 Every ritionsl integer is extetly one of the following poritive negative or zero

Theoremt 133 The elements of V ire those rational integers which are positive

Thiorem 134 The relation $<$ is transitive ind is com patible with addition in Z (However we do not have complete compubulity with multiphestiont)

Theorealiss $n b: d \in Z \quad a>b,>0 \quad d<0 \Rightarrow a c>$ be $a d<b d$

Probiem 13, Prove Theorems 112 133134 ind 135
Problem 133 Consuder the statements in Problems III through 118 of Chapter 1 with resard to whether they holdin Z Make iny alterations necess isy to hive them hold in Z if that is possible Then prove the altered st itements

Problem 134 Restate and prove for Z Theorem 115 and Problems 1111 and 1112 of Chapter 1

Problem 135 Prove $a \in Z \quad a<0 \Rightarrow$ Fb $b Z^{*} \ni a=$ $(-1) b a+b=0$

14 ABSOLUTE VALUE OF RATIONAL INTEGERS

Definition 141 Let $a \in Z$ Then $|a|-a$ if $a \geq 0|a|--a$ If $a<0$

Theoreat $141 \quad a b \in Z \Rightarrow|a+b|<|a|+|a||a b|=|a||b|$
Problem 141 Prove Theorem 141 (Hint one way is to consder four cases)

15. EXPONENTS

Previously we defined (Definition 3.3) exponents and powers with natural numbers as exponents. We now generalize this to rational integers as exponents and do it in a general semigroup with a neutral element e.

Definition 15.1. Let ($S ; \square$) be a semigroup with a neutral element e. Then $\square_{i \in \varnothing} a_{1}=e, a_{2} \in S$; multiplicatively, $a^{0}=e$, where $0 \in Z$. If $n \in Z^{2}, a^{n}$ is defined as in Definition 3.3. If $a \in S$ has an inverse a^{-1}, then for $m \in Z^{*}, a^{-m}=\left(a^{-1}\right)^{m}$ (cf. Problem 13.5).

Theorem 15.1. Let $a, b \in\langle S ; \square\rangle$, a semigroup with neutral element. Let $a^{-1}, b^{-1} \in S$ and $a \square b=b \square a$. Then $\forall n, m \in Z$, (1) $a^{n} \square a^{m}=a^{n+m}$, (2) $\left(a^{n}\right)^{m}=a^{n m}$, (3) $(a \square b)^{n}=a^{n} \square b^{n}$.

Problem 15.1. Prove Theorem 15.I. (Hint: use Problems 3.3, 3.4, 3.5.)

Problem 15.2. Write out the statements of Definition 15.1 and Theorem 15.1 for $\square=+$.

16. DIVISIBILITY IN A SEMIGROUP

In this chapter we are principally interested in Z, but it is essentially as easy to give definitions about divisibility in a rather general semigroup as it is in Z, so we shall do so.

In the following eight definitions, S is a semigroup with a neutral element and the law of composition is written as multiplication.

Definition 16.1. $a \in S, a$ is a left (right) multiple of $b \in S$ $\Leftrightarrow \exists c \in S \ni a=c b(a=b c)$. Under these conditions, b is a right (left) divisor of a. If multiplication is commutative in S, we simply say, multiple and divisor, and write, $\boldsymbol{b} \mid \boldsymbol{a}$.

Problem 16.1. Find three examples of multiples and divisors in the semigroups studied thus far.

Definition 16.2. $a \in S, a$ is a unit in $S \Leftrightarrow a$ has an inverse in S.

Problem 16.2. Prove that the only units in Z are ± 1.

Dffinition $163 a b \in S$ are associutes in $S \Leftrightarrow$ नa unit $n \in S$ Э $a=b u$ or $a=n b$

Problen 163 Prove $a \in Z \Rightarrow$ the only associates of a in Z Tre a and -a

Problini 164 Prove that the relation of beng associates is an equivalence relation

Derinition 164 Let $b \in S$ and let b be a divisor of a Then b is 9 proper iflusor of $a \Leftrightarrow$
(1) bis not an assect tie of a
(2) b is not a unit

Deinition $165 \quad a \in S$ is arreduction in $S \Leftrightarrow$
(1) a is not a unit in S
(2) a has no proper divisors in S

Definition 166 Let S be commutative ind let the cancel lation law hold for every element of S Then if p is not a unit $p \in S$ is a prome in $S \Leftrightarrow$ \{pab $a b \in S \Rightarrow$ enther $p ; a$ or $p ; b$) An element of \mathcal{Z} is a prime if and only if it is a pome in the multiplieative semigroup of Z with zero exeluded

The reader moy have encountered a definition of prime which is the above definition of irreducible element We shall show that in Z the property of being irreducible is equivalent to the property of being prime In some algebrate systems the two properties are not equivalent

Definition $167 d \in S d$ is a griatest common lefi (right) dansor of $a b \in S \Leftrightarrow$
(1) d is a lefi (rght) divisor of a and of b
(2) $f \in S f$ is a left (right) divisor of a and of $b \Rightarrow d$ is a rught (left) multuple of f
If S is commutative night and left greatest common divisors conelde (We abbreviate left greatest common divisor by 1 ged eic)

It should be noted that this definition is in terms of divisibility alone The reader may have encountered defintions of greatest com mon divisor and leass common multiple of two integers in which the conditions were given in tems of magnitude Such defintions do not generalize easily to other algebrac systems Definition 167 does

Definition 168 in $\in S$ mis a least common teft (rtght) mul nole of $a b \in S \Leftrightarrow$
(1) m is a left (right) multuple of a and of b
(2) $k \in S, k$ is a left (right) multiple of a and of $b \Rightarrow m$ is a right (left) divisor of k.

If S is commutative, right and left least common multiples coincide. (We abbreviate by l.l.c.m., etc.)

Problem 16.5. Prove: $a, b, c \in S, c|a, c| b \Rightarrow c|(a+b), c|$ ($a-b$).

Problem 16.6. Prove: $a, b, c \in S$, a semigroup, $(c \mid a$ or $c \mid b) \Rightarrow$ clab.

Problem 16.7. Prove that in a semigroup, the relation $a \mid b$ is reflexive and transitive.

17. DIVISIBILITY IN Z

In the next exercises, some of the particular properties of Z are necessary.

Problem 17.1. Prove: $a, b \in Z, a$ is a proper divisor of $b \neq 0 \Rightarrow|a|<|b|$: thus, $a, b \in Z, a \neq 0 \Rightarrow|a b| \geqslant|b|$.

Problem 17.2. Prove: $r_{1}, r_{2}, a \in Z, 0 \leqslant r_{1}<a, 0 \leqslant r_{2}<a \Rightarrow$ $\left|r_{1}-r_{2}\right|<a$.

Problem 17.3. If M is a set of nonnegative rational integers with the properties $0 \in M$ and $x \in M \Rightarrow x+1 \in M$, then M is the set of all nonnegative rational integers.

We next state and prove the division algorithm for Z. The proof given needs to be modified only slightly to hold in some more general algebraic systems.

Theorem 17.1. $a, b \in Z, a \geqslant 0, b>0 \Rightarrow \exists$ unique $q, r \in Z$ $\ni a=b q+r, q \geqslant 0,0 \leqslant r<b$.

Proof: We use Problem 17.3. Let $b \in Z, b>0$ and let $M=$ $\{a \mid a \in Z, a \geqslant 0, \exists q, r \in Z \ni a=b q+r, q \geqslant 0,0 \leqslant r<b\}$.

For $a=0, a=b q+r$, where $q=r=0$ and so $0 \in M$.
Let $a \in M$. Then $\exists q, r \in Z \ni a=b q+r, q \geqslant 0,0 \leqslant r<b$. Then $a+1=b q+r+1$. Since $r<b$, by Problem 11.3 of Chapter 1 generalized in Problem 13.3 of this chapter, $r+1 \leqslant b$. If $r+1<b$, we have $a+1 \in M$ with $r+1$ as the new r. If $r+1=b$, then $a+1$ $=b(q+1)$ and so $a+1 \in M$ with $q+1$ as the new q, and 0 as the new r. Therefore, M contains all nonnegative rational integers.

To prove uniqueness, let $a=b q_{1}+r_{1}, 0 \leqslant r_{1}<b, q_{1} \geqslant 0$. Then
$b q+r_{1}=b q+r \quad b\left(q-q_{1}\right)=r_{1}-r$ and by Problem $172\left|r-r_{1}\right|$ $<b$ and so by Problem $171 q-q_{1}=0 \Rightarrow q=q_{1} r=r_{1}$

Problem 174 Generalize the hove theorem by permitting a to be my r atonal integer and b to be iny r itional nonzero integer ch ingun the conclusion taghtly so that the generiliziton will be correct Prove the generilization (Hint induction is not necessary)

Theorem 17? $a b \in Z$ both $a b$ not zero have a gre itest common divisor (le ist common multiple) $\Rightarrow a b$ have a postive great est common divisor denoted by $\boldsymbol{t} a \boldsymbol{b}$) (positive lenst common muluple denoted by $\left[\begin{array}{ll}0 & 6\end{array}\right]$

Problemil9 Prove Theorem 172 (Note that this theorem does net shte that tho integers have gec or an Icm)

Problimi 176 Consder the situ thon in Theorem 172 if a or b or both are zero

Tiforem $173 \quad$ abe $Z a>0 \quad b>0$ and b not both zero \Rightarrow お! $\in \mathcal{Z}$ Э w $+\boldsymbol{b}-(a b)$

Proor Consider /-\{a| $\in \boldsymbol{Z}$-arth where rit $\in Z\}$
 fore I contans at le ist one positive ratomal integer ind by Theorem 11 ; of Chipter 1 and Theorem 143 of this chipter it contans a smillest pontive ritionil meger $d-x a+i b$ Then by Theorem 171 $1 q r \in Z \ni a-q d+r 0<r<d$ Then $r-1 \quad a+(-q) d$ $-1 \quad a+(-q)(x a+a, b)-(1-q x) a+(-q)$,$b Therefore r \in 1$ But since $0 \leqslant r<d$ and d is the smallest positive integer in $I r=0$ Therefore $a=q d$ Therefore $d \mid a$ and similarly $d \mid h$ Therefore d is a common divisor of a and b tet d, be wy common divisor of a and b then $a=k d \quad b=m d$ where $k m \in Z$ Then from $d-r a+, b$ $-x h d+s_{1} m d_{1}-\left\{r_{2} h+i_{1} m\right) d$ we see that $d \mid d$ Therefore since $d>0$ by Defintion 167 and Theorem 17$)^{7} d=\left(\begin{array}{ll}a & b\end{array}\right)$ Tinge $s-x_{1}$ $t-1$, and we have the theorem

Problem 177 Prove $a b \in Z a^{2}+b \neq 0 \Rightarrow \exists s t \in Z \ni$ $s a+t b-(a b)$

Problem 178
Find s and \boldsymbol{t} of Theorem 173 for $a=326$ and $b-424$

Definition 17 I abe Z are refameb prtme $\Leftrightarrow(a b)=1$ Also a is called prime to b and b prime to $a \Leftrightarrow(a b)=I$

Theorem $174 \quad \boldsymbol{a} b \boldsymbol{b} \boldsymbol{c} \in \boldsymbol{Z} \boldsymbol{a}|\boldsymbol{b} \boldsymbol{c}(\boldsymbol{a} \boldsymbol{b})=1: \Rightarrow a| c$

Problem 17.9. Prove Theorem 17.4. (Hint: use the result of Problem 17.7.)

TheOREM 17.5. $p, b_{1}, b_{2}, \ldots, b_{h} \in Z, p \mid b_{1} b_{2} \cdots b_{h}, p$ a prime $\Rightarrow \exists i \ni p \mid b_{1}, 1 \leqslant i \leqslant h$.

Proof: Let M be the set of positive rational integers, k, for which the theorem holds. Obviously, $1 \in M$, since if $h=1, i=1$. Let $h \in M$ and let $p \mid b_{1} b_{2} \cdots b_{h} b_{h+1}$. Now either $p \mid b_{h+1}$, in which case $i=h+1$, or $\left(p, b_{h+1}\right)=1 \Rightarrow p \mid b_{1} b_{2} \cdots b_{h}$ by Theorem 17.4. Then since $h \in M, \exists i \ni p \mid b_{i}, 1 \leqslant i \leqslant h$. Therefore, $h+1 \in M$. Therefore, the theorem is true for any finite number of factors.

Lemma. $\quad a, p \in Z, p$ irreducible $\Rightarrow(a, p)=1$ or $(a, p)=|p|$.
Proof: Let p be positive. If (a, p) $=h$, where $1<h<p$, then $h \mid p$, which is impossible (by Definition 16.5). The case of negative p is left to the reader.

Theorem 17.6. $p \in Z, p$ is irreducible $\Leftrightarrow p$ is prime.
Proof: First consider the implication \Rightarrow. Let p be irreducible and let $p \mid a b$, s.e., $a b=h p$, where $h \in Z$. By the above lemma, either $(a, p)=|p| \Rightarrow p \mid a$, or $(a, p)=1 \Rightarrow p \mid b$, by Theorem 17.4.

Now consider the implication \Leftarrow. Let p be a prime. Suppose $p=$ $a b$, where neither a nor b is a unit. Then by Problem 17.1, $|p|>|a|$, $|p|>|b|$. But, since $p=a b$ can be written $p \cdot 1=a b$, we have $p \mid a b$ and since p is a pume, either $p \mid a$ or $p \mid b$, which contradicts Problem 17.1.

18. UNIQUE FACTORIZATION

We shall now give a general definition which for the present we shall apply to Z only.

Definition 18.1. Let $a \in S$, a commutative semigroup with a neutral element and multiplication as the law of composition. Further, let a be expressible as $a=p_{1} p_{2} \cdots p_{r}$, where the $p_{1}, p_{2}, \cdots, p_{r}$ are irreducible in S. This factorization is essentially uniqne \Leftrightarrow whenever $a=p_{1}{ }^{\prime} p_{2}{ }^{\prime} \cdots p_{t}{ }^{\prime}$, where the $p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{r}{ }^{\prime}$ are irreducible in S. then $r=t$ and \exists a $1-1$ mapping ϕ of $\{1,2, \ldots, n\}$ onto itself \ni each p_{1} is an associate of $p_{o(1)}$. This last condition is a rigorous way of saying that there is an arrangement of the p_{3}^{\prime} so that each p_{1} is an associate of $p_{i}{ }^{\prime}$.

Sometimes, for brevity, the adjective "essentially" is omitted.

Thiorem 181 (Essentally unique fuctorization theorem for 2) I et $a \in Z, a$ not a unt and $a \neq 0$ Then a has an essentally unique factonzation as a product of promes [Since, in Z, primes are irreducsble elements (and conversely) we say promes here instead of irredueble elements]

Proor First. we prove the existence of such a factorization and then prove it unique Since of $a<0$. then $a=n(-a)$, where a is a unut, we may suppose that a is posituve We shall use Problem II 12 of Chapter 1 as generulized by Prohlem 134 of this ehapter

Let $M=\{a \mid a \in Z, a>0,(a=\mathrm{I}$. or a has a factorzation as a product of prames) \} Then $I \in M$
 $a=a d$ where,$d \in \boldsymbol{Z}$ and nether \& nor d is a untt nor an assoctate of a Then by Problem $1711<c<a, 1<d<a \Rightarrow c, d$ EM So a is equal to the product of the factonzations of a and d Therefore. $a \in$ if and so the existence of i factorization is established

Now let k be the set of posutive integers h such that for integers having A prime fictors in a fuctorization as a product of promes, that factorization is essenthatly umque

Now $1 \in \mathcal{A}$ by Theorem 1761 et $h \in \mathcal{A}$ and let $a \in Z$ have the two fuctorizations $a=p_{1} p_{1} \quad p_{1} p_{1,1}$ and $a=q_{1} q_{2} \quad q_{j+1}$ where the p_{i} and q_{r} are prime and $\rho \geqslant 1$ Now since p_{k+1} is a prime by Theo ren $175 p_{k+1} \mid q$, for some, $\mid \leqslant s \leqslant 1+1$ Without loss of generaity we may assume by renumbering the if of necessary, that $p_{k+1} \mid q_{1+1}$ Then by applying the canceflation law, we have $p_{1} p_{1} \quad p_{k}=q_{1} q_{2}$ q, μ, where ut is a unit But now on the left side of this last equation, we have an element of Z which has a factorization into a product of k onmes, so since $h \in K$ this factonzasion is essentatly umque and so each p_{i} some q. Therefore $h \in K \Rightarrow h+1 \in \Lambda$ Therefore, fac torization is essentustly unique for any fintue number of factors

Corollary $181 a \in Z a \neq 0 \quad$ I -1 , a has the distinct prime factors $p_{\mathrm{t}} p_{\mathrm{d}} . \quad . p_{n} \Rightarrow a=e p_{1}{ }^{a+p_{t}^{a s}} \quad p_{k}^{n_{n}}, \alpha_{d} \in N_{,} e= \pm 1$, and the a_{i} are umque

Problem 181 Prove the above corollaty
Problem 182 Prove $a, b \in \boldsymbol{Z}(a b)=d_{1} a=a_{1} d_{1} b=b_{1} d$ $\Rightarrow\left(a_{1}, b_{1}\right)=1$

Problem 183 Prove $a b \in Z \Rightarrow[a b](a, b)=|a b|$

19 CONGRUENCES

We now define an extrentely important equivalence relation in Z

Definition 19.1. Let $a, b, m \in Z$. Then $a \equiv b \bmod m \Leftrightarrow$ $m \mid(a-b)$. This relation is read " a is congruent to b modulo m." The integer m is called the modulus.

Theorem 19.1. Congruence modulo m is an equivalence relation compatible with addition and multiplication in Z.

Problem 19.1. Prove Theorem 19.1.

Definition 19.2. The equivalence classes determined by congruence modulo m are called residue classes modulo m. The quotient set of Z with respect to congruence modulo m is denoted by Z_{m}, with addition and multiplication induced by that in Z (cf. Theorem 12.1).

Theorem 19.2. $a, m \in Z, m \neq 0 \Rightarrow \exists r \in Z \ni a \equiv r \bmod m$ and $0 \leqslant r<|m|$.

Corollary 19.1. $\quad Z_{m}$ has $|m|$ elements.
Problem 19.2. Prove Theorem 19.2.
Problem 19.3. Prove Corollary 19.1.
Definition 19.3. $\quad \quad_{1}, r_{2}, \ldots, r_{m} \in Z$ is a complete set of residies modulo $m \Leftrightarrow r_{i} \not \equiv 1$, $\bmod m$ for $i \neq j$. The set, $0,1, \ldots, m-1$ is called the complete set of least residues modulo 17 . A set, r_{1}, r_{2}, \ldots, r_{s}, obtained from a complete set of residues by deleting those numbers which have a factor in common with m, is called a reduced set of residues modulo m .

Theorem 19.3. The number of elements in one reduced set of residues modulo m is the same as in every other reduced set of residues modulo m.

Theorem 19.4. A set of integers $r_{1}, r_{2}, \ldots, r_{s}$ is a reduced set of residues modulo \quad " \Leftrightarrow
(1) $r_{i} \neq r_{\mathrm{j}}$ for $i \neq j, i, j=1,2, \ldots, s$
(2) $\left(m, r_{i}\right)=1, i=1,2, \ldots, s$
(3) $a \in Z,(a, m)=1 \Rightarrow \exists i \ni a \equiv r_{1}, 1 \leqslant i \leqslant s$.

Problem 19.4. Prove Theorem 19.3.
Problem 19.5. Prove Theorem 19.4.
Definition 19.4. The number of integers in a reduced set of residues modulo m is denoted by $\phi(m)$ and is called the totient function and also Euler's ϕ-function.

In Z_{m}, the cancellation law of addition holds for every element, but. for multiplication, the best result is that which is given in the
second conclusion of the followny thearem
Theorfy $195 \quad a b, c \in Z \Rightarrow(a+c=b+c$ mod $m \Rightarrow a \equiv$ $b \bmod m$) and $\left(a \quad c \in b\left(\bmod m \Rightarrow a \equiv b \bmod m_{1}\right.\right.$, where $m_{1}=$ $m /(c, m)$

Proor The first conclusion is obvious For the proof of the second let $d=(c m)$ Now $a c=b c \bmod m \Rightarrow$ Э $\{\in Z \ni a c=b c$ $+h n_{2}$ where $h \in Z$ Let $e=c, d$ By hyportesis $m_{n}=d n_{1}$ where $m_{1} \in 7$ Then we hive $a c_{1}=b c_{1} d+h m_{1} d \Rightarrow a c_{1}=b_{1}+\alpha m_{1} \Rightarrow$ $(a-b) c_{1}=h m_{1} \Rightarrow c_{1} k \Rightarrow a-b=h_{1} m_{1}$ where $h_{1}=h / c_{1} \Rightarrow a-b$ $\bmod m_{1}$

Corollary $192 a r=b x \bmod m(c m)=1 \Rightarrow a=b \bmod m$
Problex 196 Gre an example showing that the last state ment of Theorem 19 ₹ winnot be improved

Lemala $\quad a b \in \in \quad(a b)=1 \quad a>0 \quad b>0 \Rightarrow r \quad a+r$. $2 n+r$ $(b-1) a+r$ form a complete set of resudues modulo b

Proor Since there are b integers in the set we need merely show that no tho are congruent modulo b Suppose $m+r=m a+r$ $\bmod b$ with $0 \leqslant n \leqslant b 0 \leqslant m \leqslant b$ Then by Theorem $195 m a-n a$ mod b and by Corollary 19? $n=m \bmod b$ and so $n=m$ by the inequalutes satssfied by n and m

Theorem $196 \quad a b \in Z(a b)=1 \Rightarrow \phi(a) \phi(b)=\phi(a b)$
Proof The expression $a q+r$ for $r=01 \quad a-1$ and $q=01 \quad b-1$ gives without repettion all nonnegutive mtegers less than ab Cleasly nis $+r$ is prome to $n \Rightarrow\{n\}=$,1 Lei $r_{\text {, be ore }}$ of those $\phi(a)$ integers (1e wheh are prime to a) Then by the above lemma there are among $r_{1} a+r_{1} 2 a+r_{1} \quad(b-1) a+r_{t}$ exactly $\phi(b)$ integers prime to b Therefore there are exactly $\phi(a) \phi(b)$ nonnegative integers fess than ab and pnme to both it and b Therefore $\phi(a) \phi(b)=\phi(a b)$

Theoren $197 p \in Z \quad p$ a pnme $n \in N \Rightarrow \phi\left(p^{*}\right)=p^{*}$ ' $(p-1)=p^{\prime \prime}(1-1 / p)$

Theorem $198 \quad m \in Z p_{1} p_{0} \quad p_{k}$ are the distinct prime
 $\left(p_{1}-1\right)\left(p_{2}-1\right) \quad\left(p_{k}-1\right)=m\left(1-1 / p_{1}\right)\left(1-1 / p_{z}\right) \quad\left(1-1 / p_{k}\right)$

[^0]Problem 19.9. Prove: q is the product of the distinct prime factors common to m_{1} and $m_{2} \Rightarrow \phi\left(m_{1} m_{2}\right)=q\left(\phi\left(m_{1}\right) \phi\left(m_{2}\right) / \phi(q)\right)$.

Theorem 19.9. (Fermat-Euler) $a, m \in Z,(a, m)=1, m>0$ $\Rightarrow a^{\delta(m)} \equiv 1 \bmod \mathrm{~m}$.

Proof: Let $a_{1}, a_{2}, \ldots, a_{\phi(m)}$ be a reduced set of residues modulo m. Then the set of integers $a a_{1}, a a_{2}, \ldots, a a_{\phi(m)}$ is also a reduced set. For, if $a a_{2} \equiv a a_{,} \bmod m$, then by Corollary 19.2, $a_{1} \equiv a_{3}$ mod m, which contradicts the hypotheses made about the a_{1}. Therefore, $a_{1} \equiv a a_{n_{2}} \bmod m$, for $i=1,2, \ldots, \phi(m)$ and suitably chosen n_{l}, by Theorem 19.4. Now by multiplying these congruences together, we get $a_{1} a_{2} \cdots a_{\phi(m)} \equiv a^{\phi(m)} a_{1} a_{2} \quad a_{\phi(m)} \bmod m$, and so by the same corollary, $a^{\phi(m)} \equiv 1 \bmod m$.

Corollary 19.3. (Fermat's Theorem) $a, p \in Z, p>0, p$ a prime, $p \nmid a \Rightarrow a^{p-1} \equiv 1 \bmod p$.

Corollary 19.4. $a, p \in Z, p>0, p$ a prime $\Rightarrow a^{p} \equiv a \bmod p$.
Definition 19.5. $a \in Z, a$ is even $\Leftrightarrow 2 \mid a ; a$ is odd $\Leftrightarrow 2 \nmid a$.
Problem 19.10. Prove Corollary 19.3 directly.
Problem 19.11. Give three examples in which the cancellation law of multiplication does not hold in Z_{m}, for some $m \in Z$.

Problem 19.12. Prove: the nonzero elements of Z_{m} and the multiplication induced in Z_{m} by that in Z form a group $\Leftrightarrow m$ is a prime.

Problem 19.13. Prove that the reduced residue classes of Z_{m} and multiplication form a group.

Problem 19.14. Show that Z_{4} and addition is a group which is not isomorphic to the reduced residue classes of Z_{8} and multiplication. Find groups previously studied which are isomorphic to each.

Problem 19.15. Show that Z_{6} and addition is isomorphic to the reduced residue classes of Z_{7} and multiplication.

Problem 19.16. Find all isomorphisms of the groups of Problem 19.15.

Problem 19.17. Show that the even integers of Z and addition form a group isomorphic to the additive group of Z.

Problem 19.18. Find an explicit formula giving one or more integers $\lambda \ni a, \equiv b \bmod m$ and state when it is valid.

Chapter 3: Groups

This chapter is devoted to the study of proups Most of it concerns the application to groups of a large number of the fundamental concepts discussed in the first tho chapters We consider subsystems cealled subgroups) miming the various types, and we combine one type with equablence relitions to oblain the concept of a quotient group we introduce free groups as another way of obtannge groups with a few generators and a few generating relations

A discussion of abelian groups of finte order is included for two reasons The subject is of considerable importance for other matters and also it provides a neat example of a mathematical problen com pletely solved

Two Sylow theorems are extablished and a few applications of them are given to illustrate brefly the problems involved in the study of groups of finite order

Permutation groups are considered for their own importance and for their use in Chapter 6 in considering the Galon Theory of Equitions

Automorphisms and endomorphisms of some groups of small finte order are considered to illustrate part of the general theory and to lead to the consideration of nings in Chapter 4

Finally composttion sertes are considered and the fundamental theorem about them for finte groups is proved to have $1 t$ avallable for Chapter 6

1 GENERAL PROPERTBES OF SUBGROUPS

We have previously given in Defintions $\$ 2$ and 62 of Chapter 2 the definitions of subsemgroups and subgroups We now consider vanous of their properties and distingush between some different hinds of subgroups

DEFinition I I If G is a group the two subgroups of G consisting respectivety of G itself and of the neurral element alone are called mproper subgronps All other subgroups of G are called proper subgroups

ThEOREM 1.1. Let $\langle G, \square\rangle$ be a group and H a set of elements of G. Then,
(1) H and \square form a subsemigroup of $G \Leftrightarrow$ condition (1) of Definition 6.1 b of Chapter 2 holds:
(2) H and \square form a subgroup of $G \Leftrightarrow$ conditions (1), (3), and (4) of Definition 6.1b of Chapter 2 hold:
(3) if G is finite, H and \square form a subgroup of $G \Leftrightarrow$ condition (1) of Definition 6.1b of Chapter 2 holds.

Proof: The first two statements follow from the condition that \square is associative in G and so in H; the third follows from Theorem 6.1 of Chapter 2.

Problem 1.1. Find all subgroups of S_{3} (cf. Problem 4.2 of Chapter 2).

Problem 1.2. Find all subgroups of the additive group of Z.
Problem 1.3. Find all the subgroups of $\left\langle Z_{7},+\right\rangle ;\left\langle Z_{8},+\right\rangle ;$ $\left\langle Z_{24},+\right\rangle$.

Problem 1.4. Find all subgroups of the reduced residue classes of Z_{10} and \cdot, Z_{8} and \cdot, Z_{5} and \cdot.

Problem 1.5. Prove that if H is a finite subset of a group $\langle G, \square\rangle$, and if H is closed with respect to \square, then $\langle H, \square\rangle$ is a subgroup of $\langle G, \square\rangle$.

Theorem 1.2. If H and K are subgroups (subsemigroups with $H \cap K \neq \varnothing$) of a group (semigroup) G, then $H \cap K$ is a subgroup (subsemigioup) of G.

The remark at the end of Section 4 of Chapter 2 about omitting mention of the law of composition of a group is followed in stating the above theorem.

Рroblem 1.6. Prove Theorem 1.2.

Problem 1.7. Give an example to show that a theorem about $H \cup K$, sımilar to Theorem 1.2, does not, in general, hold.

Problem 1.8. Generalize Theorem 1.2 to any collection of subgıoups of a gıoup. Prove your generalization.

Due to the situation that the union of subgroups is not necessarily a subgroup we must resoit to a different method of finding a subgroup containing two given subgroups. Some aspects of the method are useful generally, so we give a very general definition.

Definition 12 Given a set S and a property P (which may have several conditions to be fulsiled) The smallest subset of S pos sessing the propert) P is that subset T of S, if one exisls, which sausfies
(B) T has the property P
(2) $\forall U \subset S \ni U$ has the property P.T $\subset U$

Thus for example we may speak of the smallest subgroup of a group G te , the smallest subset of C which has the property of being a group (with the same law of composition as G, of course) Here, the subset elearly exists n is the subgroup consisting of the neutral element alone Howeser we could also ask to find the smallest subgroup of G which contans all the elements of a particular subset H of G We can obtan the smallest subsemgroup with this property as follows Consider all products to use multiphation as the law of composition) of a finte number of elements of $\| / \prod_{1, i=1}^{*} h_{4}$ Tahing two
 which is also a product of a finte number of elements of H That the associative law holds for such products follows from Theorem 31 of Chapter 2 Thus we have a subsemugroup which contains H (since of course $\#$ or m or both can be 1) Furithermore any subsemigroup which contans all the elements of $/ /$ must contan this subsemgroup Therefore Deinnsion i2 it is the smallest subsemgroup of G which contains H Thus we have proved

Theorlm 13 The umallest subvemgroup of a setugroup S containing a nonempty subet $/ /$ of S is the set of all composites of a finte nonzero number of elements of $I f$

It ahould be noted that if S has an neutral element then the con ditions that H be nonemply and nonzero may be dropped This is a simple consequence of Defintion 151 of Chapter 2 The next three theorems can be proved afier the manner of Theorem 13

Theorca 14 The smallest subsemgroup of a semgroup S contaning d nonempty subsel // of S is the common part of all sub senugroups of C contanning H

Theorfnt 15 The smallest subgroup of a group G contaning a subset $I /$ of G, is the set of all composites of a finte number of elements of H and ninverses of elements of H

Theorem 16 The smakest subgroup of a group G contaning a subset H of G is the common part of all subgroups of G containing H

Problem 19 Prove Theorems 14, 15, and 16

The above four theorems are fairly simple consequences of the defintions of subsemigroup and subgroup. The next theorem is less obvious and is a result which we shall often find very useful.

Theorem 1.7. Let H be a nonempty subset of a group $\langle G, \square\rangle$. Then H and the restriction of \square to H form a subgroup of $G \Leftrightarrow a \square b^{-1}$ $\in H$ whenever $a, b \in H \Leftrightarrow b^{-1} \square a \in H$ whenever $a, b \in H$.

Proof: We shall prove the first necessary and sufficient condition and leave the other to the reader.

The implication " \Rightarrow " is obvious.
Consider the implication " \Leftarrow '. Suppose $a \square b^{-1} \in H$ whenever $a, b \in H$. Then in particular, $a \square a^{-1}=e \in H$, where e is the neutral element of G, and $e \square a^{-1}=a^{-1} \in H, \forall a \in H$. Thus conditions (3) and (4) of Definition 6.1b of Chapter 2 are satisfied. We have just established that $b \in H \Rightarrow b^{-1} \in H$. Therefore, $\forall a, b \in H, a \square b$ $=a \square\left(b^{-1}\right)^{-1} \in H$ and so condition (I) of that same definition is satisfied. Therefore, by Theorem I.I, part (2), H is a subgroup of G.

2. CYCLIC GROUPS AND SUBGROUPS

This section will be devoted prımarıly to a particularly elementary type of group, but first we make a definition which introduces a more general concept.

Definition 2.1. (a) The subsemigroup (subgroup) whose existence is established by Theorem 1.3 (Theorem I.5) is called the subsemigroup (subgroup) generated by the set H.
(b) A set of elements H is a set of generators of the subsemigroup (subgroup), K, of a semigroup S (group G) $\Leftrightarrow K$ is the subsemigroup of S (subgroup of G) generated by the set H.
(c) A subgroup K of a group G is a cyclic subgroup of $G \Leftrightarrow K$ is generated by a set H consisting of a single element, which is then called a generator of the cyclic subgroup. In this case, if $K=G$, we say that G is a cyclic group.

Of course, in all thiee parts of the above definition, the whole group or semigroup may be the subgroup or subsemigroup.

Problem 2.1. Prove directly, by using Theorem 15.1 of Chapter 2, that the set of all powers (cf. Definitions 15.5 and 3.3 of Chapter 2) of a single element $a \in G$, a group, form a subgroup of G.

Problem 2.2. Give five cyclic groups considered so far.

Problem 23 Prove thit $\left(a^{x}\right)^{\prime}=a$ ith a semigroup with a neutral eiement Do it without using Theorem 151 of Chapter 2

Problem 24 Prove that

$$
t=\binom{a b c d}{a b c d} \quad \alpha=\binom{a b c d}{b c d a} \quad \beta=\binom{a b c d}{c d a h} \quad \gamma=\binom{a b c d}{d a b c}
$$

form a cyclic group Shou thit α and $\boldsymbol{\gamma}$ are generators but that t and β are not

Problem 25 Prove that

$$
\epsilon=\binom{a b c d}{a b c d} \quad \delta=\binom{a b c d}{b a d c} \quad \in=\binom{a b c d}{c d a b} \quad n=\binom{a b c d}{d c b a}
$$

form \mathfrak{y} group which ts not cyclic
Problest 26 Give ill the elements of the cyclic group generited by $h-\binom{a b i d t}{b, d c a}$ Which are generators?

Prozi Em 27 Prove every subgroup of a cyclic group 15 cyules

Defintition 2: The order of the cycile subgroup gener ited by in element $a \in G$ group is called the penod of a it is fre quently also called the order of (d)

Problem 28 Prove that $\alpha=\left(\begin{array}{lll}a & a_{2} & a_{n} \\ a_{n} & a_{n} \\ a_{2} a_{s} & a_{n} & w_{1}\end{array}\right)$ is of period n Thus prove that there exists a cyclic group of order n for each positive integer 4

Problem 29 Prove that two cyslic groups of the same order are isomorphe

Theorem $二 1$ If the finte cyche subgroup if of the group G generated by the element a is of order n then H consists of the elements $a a^{2} \quad a^{n}=6$ where e is the neutral element of G

Proof Since \boldsymbol{H} is finte the elements a $\in \mathbb{E}$ cannot alf be different Let $a^{2}=a^{n}$ where for definteness we myy suppose that $h<h$ Then $e=a^{n} k$ where $h-h>0$

Then we know that the set $L-\left\{r \mid r \in N a^{2}=e\right\}$ is nonempty and so there exsts a smallest element in at say m Then $a^{n}=e$ For $0<s<t<m a^{*} \neq a$ since of $a^{*}-\boldsymbol{a}$ then $a-e$ and $0<t-s$
$<m$, and this is impossible since m was the smallest element of L. Thus $a, a^{2}, a^{3}, \ldots, a^{m-1}, e$ are all distinct.

Every element of H is one of these m elements, since $\forall w \in Z$, by Theorem 17.1 of Chapter $2, \exists q, r \in Z \ni w=m q+1$, with $0<r<m$ and $a^{n}=a^{m a+1}=a^{m m} a^{\prime}=\left(a^{m}\right)^{m} a^{\prime}=e^{q} a^{\prime}=e a^{\prime}=a^{\prime}$. Therefore, $m=n$.

Theorem 2.2. If G is a cyclic group of finite order n, generated by a, then the number of distinct generators of G is $\phi(n)$, and the generators are the elements a^{h}, where $h \in Z$ and $(h, n)=1$.

Proof: Let $h \in Z$ and let $(h, n)=1$. To show that α^{k} is a generator of G, it suffices to show that $\left(a^{\wedge}\right)^{h}, h=1,2, \ldots, n$, are distinct, since there are only n elements in G.

First, we shall show that $\left(a^{h}\right)^{h} \neq e$ for $0<h<n$. For, suppose that $\left(a^{h}\right)^{h}=e$ for some $h_{1}, 0<h_{1}<n$. Then $\exists q, r \in Z \ni k h_{1}=n q$ $+1,0<r<n,[r>0$ since $(n, h)=1]$. Then $e=\left(a^{h}\right)^{h_{1}}=a^{h h_{1}}$ $=a^{n q} a^{\prime}=a^{r}$, which is impossible since then there would be fewer than n elements in G.

Now if $\left(a^{h}\right)^{\prime}=\left(a^{h}\right)^{t}$, where $0<s<t<n$, then $\left(a^{h}\right)^{t-c}=e$, with $0<t-s<n$, which is impossible by what we have just proved. Therefore, the $\left(a^{h}\right)^{h}, h=1,2, \ldots, n$, are all distinct and so a^{h} generates G.

If $(h, n)=d>1$, then $\left(a^{h}\right)^{n /(\prime)}=\left(a^{h}\right)^{n(h, n)}=a^{h n(h, 1)}=\left(a^{\prime \prime}\right)^{h /(h, \prime \prime)}$ $=e$, and so, in this case, a^{h} cannot be a generator.

For any $h \in Z \ni(k, n)=1 \exists h_{0} \equiv h \bmod n, 0<h_{0}<n$ and $a^{h}=a^{h o}$. Therefore, the number of distinct generators is the number of positive integers less than n and prime to n. Therefore, there are $\mathrm{e}_{\text {a actly }} \phi(n)$ generators.
$(C \cdot) \quad \lll t$
Problem 2.10. Prove that the period of an element $a \in G$, a group, is the smallest positive integer $n \ni a^{n}=e$, if there exists such an n.

Problem 2.11. Prove that if n is the period of $a \in G$, a group, and if $a^{\prime}=e$, then $n \mid h$.

Problem 2.12. Prove that if the group G is isomorphic to the group G^{\prime}, and if in that isomorphism $a \in G$ is mapped onto $a^{\prime} \in G^{\prime}$, then a and a^{\prime} have the same period.

Problem 2.13. Investigate the situation of Problem 2.12 in the case where G is merely homomorphic to G^{\prime}.

Problem 2.14. Prove that if $a, b \in G$, a group, and $b a=a b$
then the period of $a b$ divides the 1 c m of the puriods of a and b
Problem 215 Given $a \in G$ 1 group a is of period n ind $h \in 7^{*}$ prove $(k n)=d \Rightarrow a^{5}$ is of period $n /(k n)$

3 EQUIVAI ENCE REI ATIONS IN A GROUP

The number of equivalence rel utions which can be defined in a group is rather large sunce any pirtition of the set of elements of the group dehnes in equinalence relinum by Theorem 82 of Chapter 2 How ever the most tnteresting and useful equivalence relations in 7 my algebr ue systert ure those which are computible at lenst on one side with the law or laws of composition of the tystem It is of considerable importance that we c in char acterize such equivilence relations com pletely for 1 group We do so in the next two theorems

Theorem 31 If $/ /$ is isubgroup of igroup $\langle G[7\rangle$ then $r R 1 \Leftrightarrow r \square)^{1} \in H(r \square i \in H)$ is in equisalence relation com pitible on the right (left) with \square

Prool First we note that since G is a group $\forall x: E G$ etther $r R$, or $r(h)$ so R is defined for every pur of elements of G

Next we prove that R is an equivilence relation
It is reflexive for mace H is agroup \& $E H$ andiso rax ${ }^{1} \in H$ $\Rightarrow \quad R_{r}$

It is symmetris For since H is 1 group of $r \square)^{i} \in / /$ (ie of $x R_{1}$) then ith inverse (r $\left.\square,{ }^{\prime}\right) \quad 1-\Delta r \in \| l e j R r$

It is transtive for since H is a group of $\square \square$; $\in I$ ands $\square z^{1}$ $\in I /\left(1 \mathrm{e}\right.$ if $\mathrm{s} R$, ind $\neg R$) then their composite $\left.(\mathrm{x} \square)^{\prime}\right) \square(\mathrm{g} \square \mathrm{z})$ $-r \square c^{1} \in / f$ Thut is $r R$ Therefore R is m equivalence relaion

Now we prove the right compatibility if $\in G$ ind $r \square)^{\prime} \in H$
 $3^{1} \in H$ and so $r R i \Rightarrow(r \square, \quad R(\square \square) \quad 1 E G$ We leave the left c ises to the reider as an exereme

It should be noted th it $h R c \Leftrightarrow h \in H$
Prosicm 31 Carry through the detarls of the proof of Theo rem 3 I for the ese in parentheses

Now we prove thit the relitons discussed in Theorem 31 are the only ores compatible on the nght or left with the law of composition of the group

Theorfm 72 If the relation R is an equivalence relation de fined in a group ($G \square$) compatible on the nght (lefl) with $[\square$ then
(1) the elements $a \in G \ni$ aRe form a subgroup H of G,
(2) R can be defined by $x R y \Leftrightarrow \lambda \square y^{-1} \in H\left(x^{-1} \square y \in H\right)$.

Proof: (1) Let $a R e, b R e$. By symmetry of $R, e R b$, and by transitivity, $a R b$. Then by right compatibility, $a \square b^{-1} R e$, and so by Theorem 1.7, H is a subgroup of G.
(2) The relation \Rightarrow. If $x R y$, then by right compatibility, we have $\square \square y^{-1} R e$ and so $x \square y^{-1} \in H$.

The relation \Leftarrow. If $\lambda \square y^{-1} \in H$, then by definition of $H . \lambda \square y^{-1}$ $R e$ and by right compatibility, $x R y$.

Problem 3.2. Carry through the detanls of the proof of Theorem 3.2 for the case in parentheses.

We now introduce a law of composition (in the set of all subsets of a set) which we shall use at present for subsets of a group, but we shall give a definition valid more generally.

Definition 3.1. Let S be a set with a law of internal compositon, \square, and let H, K be subsets of S. Then $H \square K$ is the set of all elements $h \square h$ where $h \in H$ and $h \in K$.

We shall use the above definition in the next theorem. We need one more definition. It happens that in a group, equivalence classes can be represented in a very simple and convenient form. We introduce terminology for that now.

Definition 3.2. If $\langle H, \square\rangle$ is a subgroup of a group, $\langle G, \square\rangle$, and if R is one of the equivalence relations of Theorem 3.1, then the equivalence classes determined by R are called tight or left cosets of G with respect to H (sometimes briefly, cosets of H if the meaning is clear from the context) according as R is $x R y \Leftrightarrow x \square y^{-1} \in H$ or $\backslash v \Leftrightarrow A^{-1} \square y \in H$. The number of right cosets is called the index of $H m G$ and is denoted by $(G: H)$.

Theorem 3.3. If H is any subgroup of a group, $\langle G, \square\rangle$, then the light (left) cosets of G with respect to H are the sets $H \square$ i $(y \square H)$, where we have written $H \square x$ as an abbreviation for $H \square$ $\{1\}$, where $\lambda \in G(y \in G)$, and those cosets different from H can be witten $H \square \lambda(y \square H)$, where $\lambda \notin H(y \notin H)$.

Proof: Let $x \in A$, a right coset. Then if $z \in A, x \square z^{-1} \in H$, i.e., $\square z^{-1}=h \in H$, or $\mathfrak{i}=h \square z$. Therefore, $A \subset H \square x$.

On the other hand, if $z \in H \square \lambda$, then $z=h^{\prime} \square \lambda$, where $h^{\prime} \in H$; thus $. \lambda=h^{\prime \prime} \square z$, whete $h^{\prime \prime}=h^{\prime-1} \in H$. so $x \square z^{-1}=h^{\prime \prime} \in H$. Therefore, $H \square i \subset A$. Theiefore, $H \square:=A$.

Problem 33 Show that in $7 a=h \bmod m$ is an equivalence relation of the cype of Theorem 3 I

Prosicm 34 In S_{7} let $\AA_{1}=\{\alpha \alpha \beta\}$ Find $\alpha h_{1} \delta h_{1} \in K_{1}$ $\boldsymbol{K}_{1} \boldsymbol{\beta} \boldsymbol{h}_{\mathbf{1}} \boldsymbol{E}$

Probleme 3 5 In S_{3} let $K_{\mathbf{2}}-\left\{\begin{array}{ll}\boldsymbol{l} & \boldsymbol{\gamma}\end{array}\right\}$ Find all right and left eosets of S_{3} with respect to K_{2}

Problem 36 In C_{12} the cyelie group of order 12 genterated by a let $H=\left\{\begin{array}{lll}1 & a^{3} & u^{4} \\ a^{n}\end{array}\right\}$ where $a^{17}=1$ the neutral ciement find a/I $a^{2} / / a^{2} / /$

Problemi 37 In C_{12} of Problem 36 find (a / I) $(a H)$ ($a H$) ($\left.a^{2} / H\right) H(a / I)$ ind $(a / H)\left(a^{2} f f\right)$

Problem 38 Prove if $/ /$ is 1 subset of the finte group
 the implication \rightleftharpoons holds

Proalem 39 Prove ($\| \square A] \square=H \square(\hat{\square} \square L)$ for any subsets $\| \mathrm{K} L$ of a semigroup

Problem 3 io Prove $h \square H=H$ if H is 2 subgroup of 7 group G and $h \in$ I/

Problfm 3 II Prove $a b \in\langle G \square\rangle$ igroup ($\|$ I \square is a subgroup of $\{G \square\rangle b \in a \square H \Rightarrow a \square H-b \square H$

Probleat $312 \quad \ln \langle Z+\rangle$ find the eosets with respect to the subgroups consisting of all intsers wheh are multuples of 5 of m

Theorem $34 \quad 1 \quad B$ are any two eosets of a group G with re spect to d subgroup H of $G \Rightarrow A \mid 11 \mathrm{~m}$ pping of A onto B

Corollary 3 I The number of elements in any iwo cosets of a group G with respect to a subgroup H is the same

Corollary 3^{3} The number of left cosets of G with respect to H is equal to the number of night cosets of G with respect to H

Problem 313 Prove Theorem 34 and ils corollaries
Theoreas 35 (Lagringe) If H is a subgroup of a fimte group G then the order of H divides the order of G

Proof Let h be the order of H \& the order of G and h the number of cosets of G with respect to H By Theorem 81 of Chapter 2 every element of G is in one and only one coset By Corollary 31
to Theorem 3.4, each coset has h elements in it. Therefore, the number of elements in G is $h k$. That is, $g=h k$ and so $h \mid g$.

Corollary 3.3. If H is a subgroup of a finite group G, then the order of G is the product of the order of H and the index of H in G.

Problem 3.14. Prove: G, a group, has order p, a positive prime $\Rightarrow G$ has no proper subgroup.

Problem 3.15. Prove: $h \mid n \Rightarrow \exists$ a subgroup of order h in the cyclic group of order n.

Problem 3.16. Prove: all groups of order p, a positive prime, are isomorphic.

Problem 3.17. Find the indices of the subgroups in Problems 3.4, 3.5, and 3.6.

Problem 3.18. Prove: H, K are subgroups of a group G, $K \subset H,(G: K)$ is finite $\Rightarrow(H: K)$ is finite and $(G: K)=(G: H)$ ($H: K$).

Problem 3.19. Prove: H, K are subgroups of a group G, $K \subset H,(G . H)$ and $(H: K)$ are finite $\Rightarrow(G: K)$ is finite and $(G: K)$ $=(G: H)(H: K)$.

Using the result of Problem 3.5, we see that S_{3} can be represented as the union of right cosets as $S_{3}=\{\iota, \gamma\} \cup\{\alpha, \epsilon\} \cup\{\beta, \delta\}$, while as the union of left cosets we have $S_{3}=\{\iota, \gamma\} \cup\{\alpha, \delta\} \cup\{\beta, \epsilon\}$. If we use the subgroup K_{1} of Problem 3.4, the two corresponding representations are the same. It is important to distinguish between such subgroups. The distinction is given by the problem of determining when the equivalence relation determined by a subgroup is compatible (on both sides) with the law of composition of the group. The next two theorems give the complete determination.

Theorcm 3.6. If an equivalence relation R defined in a group $\langle G, \square\rangle$ is compatible with \square, then the subgroup, $H=\{h \mid h \in G, h R e\}$ has the property that $\forall h \in H, \forall y \in G, y^{-1} \square h \square y \in H$.

Proor: Since R is an equivalence relation, compatibility is equivalent to simultaneous right and left compatibility. Let $h \in H$ and $y \in G$. Let $x=h \square y$. Then $\square \square y^{-1}=h$ and so by the definition of $H . a \square y^{-1} R c$, and so by right compatibility, $x R y$. Now by left compatibility, $c R x^{-1} \square y$, so $i^{-1} \square y \in H$, i.e., $y^{-1} \square x=h_{1} \in H$. or $1=y \square h_{1}$. Finally, $y \square h_{1}=h \square y \Rightarrow h_{1}=y^{-1} \square h \square y$.

Thegrem 37 If（ $/ \mathrm{H}$ ）is a subgrous of $(C[\square\rangle$ a group
 then the equivalence relation of Theorem 31 defined by H is com patible uth \square

Proor We shill prove thit the two relations of Theorem 31 are equivalent t et $x \square$ ，$-h \in J$ Then $t=\{口$ ）Since H is a

 ，$\in \|$

Thus unce whenever ether chaton holds the other one does and one is computible on the rught the other on the left the siagle relation is compitible

Ditinition ${ }^{3} 3$ in igroup（ $G \square$ ）a abberoup $/ /$ is called
月円リヒH

 ［．$V \in \in$

Problem＂＇l Prove that for in inv iflant subzroup left cosems are right covet，

Probien ${ }^{3}$＇h tind ten mimiant vuhgroups of groups con sidered previously

Probien ${ }^{73}$ Find three subtroup of the groups considered previounly which ire not inv int int

Problem ${ }^{3}$＇4 Prove that 7 shbgroup of index 2 is invariant
Surce we now have an equivilence reltaon defined in a group ＜C［］〉 and comptible with \square it is maril to consider the quotient set A of G with reppet to that relation ind the fiw of composition mduced by D in A By Theorem $\mathrm{I}^{7} \mathrm{~s}$ md Theorem 122 of Chapter？ A is isemgroup By Theorem 33 and the last part of Problem 3 ？ 0 and Problem 39 we bave $H \square(a \square H)-(H \square a) \square H-(a \square H)$ $\square H=a \square(H \boxminus H)-a \square H$ and smularly（ $a \square h$ ）$\square H-a \square H$ （We hive used \square for the induced law but by Theorem 33 there is no dinger of confusion）Thas $I 4$ is a neuts alement for h Fintly by simlar re soning（a＇ロII）$\square(a \square I)-H-(\ldots \square H) \square(a \quad \square H)$ so every elemem of K his an anverse in A Therefore h is a group and we have proved

Theorem 3.8. Let $\langle G, \square\rangle$ be a group and H an invariant subgroup of G. Let R be the equivalence relation of Theorem 3.1. Then the quotient set G / R and the law of composition induced by \square in G / R is a group, called the quotient group of G with respect to H and is denoted by G / H. (This is sometimes called a factor group.)

Problem 3.25. Find the quotient groups of C_{12} (cf. Problem 3.6) with respect to two of its proper subgroups.

Problem 3.26. Find the quotient group of S_{3} with respect to its proper invariant subgroup (cf. discussion preceding Theorem 3.6).

Definition 3.4. A group is abelian (or commatative) \Leftrightarrow its law of composition is commutative.

Problem 3.27. Find six abelian groups so far considered.
Problem 3.28. Prove that any quotient group of an abelian group is abelian.

Problem 3.29. Prove that any quotient group of a cyclic group is cyclic.

4. HOMOMORPHISMS AND ISOMORPHISMS OF GROUPS

Homomorphic mappings of algebraic systems in general are of the utmost importance in most of the study of algebra. The most basic result for groups is the next theorem.

Theorem 4.1. Let α be a homomorphic mapping of a group (G, \square) into a set E which possesses a law of internal composition O. Then
(1) the set of images, $K=G \alpha$, and \bigcirc form a group,
(2) the set $H=\left\{\left.x\right|_{-1} \in G, x \alpha=e^{\prime}\right\}$ and \square, where e^{\prime} is the neutral element of K, is an invariant subgroup of G, called the keruel of α.
(3) G / H is isomorphic to K.

Proof: (1) Let $h_{1}, h_{2} \in K$. Then $\exists g_{1}, g_{2} \in G \ni g_{1} \alpha=k_{1}$, $g_{2} a=h_{2}$. Now, since G is closed under $\square, \exists g_{3} \in G \ni g_{3}=g_{1} \square g_{2}$, and so $\exists h_{3} \in K \ni g_{3} \alpha=h_{3}$. Then $h_{3}=g_{3} \alpha=\left(g_{1} \square g_{2}\right) \alpha=\left(g_{1} \alpha\right)$ $O\left(g_{2} \alpha\right)=h_{1} \bigcirc h_{2}$. Therefore, K is closed under O.

Let $h_{1}, h_{2}, h_{3} \in K$. Then $\exists g_{1} . g_{2}, g_{3} \in G \ni g_{1} \alpha=k_{1}, g_{2} \alpha=h_{2}$, $g_{3} \alpha=h_{3} . h_{1} \bigcirc\left(h_{2} \bigcirc h_{3}\right)=\left(g_{1} \alpha\right) \bigcirc\left[\left(g_{2} \alpha\right) \bigcirc\left(g_{3} \alpha\right)\right]=\left(g_{1} \alpha\right) \bigcirc\left[\left(g_{2}\right.\right.$ $\left.\left.\square g_{3}\right) \alpha\right]=\left[g_{1} \square\left(g_{2} \square g_{3}\right)\right] \alpha=\left[\left(g_{1} \square g_{2}\right) \square g_{3}\right] \alpha=\left[\left(g_{1} \square g_{2}\right) \alpha\right] \bigcirc$ $\left(g_{3} \alpha\right)=\left[\left(g_{1} \alpha\right) \bigcirc\left(g_{2} \alpha\right)\right] \bigcirc\left(g_{3} \alpha\right)=\left(h_{1} \bigcirc h_{2}\right) \bigcirc h_{3}$. Therefore, the law of composition O is associative in K.

Since G is a group G his a neitral element e Let $e=e a$ and let $h \in K$ Then $i g \in G \exists g a-h$ Then $e O h=(\rho a) O(g \alpha)$ $=(e \square g) \alpha=g \alpha-h$ Smalnty hOe $=\lambda$ Therefore e is a neutral element for K
[et $k \in \kappa$ and let $\kappa \in G \exists\left\{\alpha=K\right.$ Then $7_{k} \quad \in \in G$ and $\exists k$ $\in K \ni h=\left\{{ }^{\prime} \alpha\right.$ Then $K O K=(\alpha \alpha) O(\kappa, \alpha)=\left(\rho \square g{ }^{1}\right) \alpha=e \alpha$ $-e$ Similarly k OR=e Therefore h is the inverse of h and so k is a group
(2) Let $\delta g_{2} \in G$ be $Э \delta_{1} x-c \quad \alpha \quad \alpha-e$ Then $f-\varepsilon \alpha-$ $\left(g_{2} \square g_{2}\right) a-\left(g_{2} c^{\prime}\right) \bigcirc\left(k_{2} \quad c\right)=g_{2} \quad \alpha \quad$ Therefore $\left.\left(g_{1} \square g_{2}\right)_{\alpha}\right)$ c Therefore by Theorem I $7 \boldsymbol{I}$ is a subgroup of G Let $h \in H$ and $g \in G$ Then ($g \square h \square g$) ($g a) \bigcirc(h \alpha) O(\alpha a)=(\kappa \quad \alpha)$ O O $O(x a\}-\{s a) O(f a)=(g \quad \square s t a=r a=e$ Therefore h $\in H \Rightarrow g \quad \square \square \square \in H \notin \in G$ Therefore by Defintion 33 $H 5$ an inv iriant subgroup of G
(3) The quotient troup $G / / /$ cons sts of cosets of G with respect to $1 /$ We must show first that there exists 11 I mapping of these cosels onto h The mopping a will g ve us the destred mapping Let A be iny eoset and lei $a_{1} \| \in A$ Then $1-a \square H-H \square a$ by Theorem 33 and Definuion 33 so a-a $\square h_{1} a_{2}-a \square h_{2}$ where $h h_{2} \in \|$ Then $a a-(a \square h\}_{1}-(a \alpha) ○(h \alpha)-(a \alpha) O e-a \alpha$ and smmlarly $a_{1} \alpha-a \alpha$ Therefore under α ill elements of A are mapped onto the same element of h so whthout danger of eonfu sion we miy write Ao- rox though this is an extension of the mean ing of the mapping α We then hive a mapping of G / H into K it is onto since if $h \in \AA \exists_{k} \in G \exists s x=\alpha$ and so ($\alpha \square H$) $\alpha-h$ It is 11 since if $A a-B a$ leting $a \in A b \in B$ then we hive $a \alpha-b \alpha \Rightarrow a \quad \alpha=b \quad a \Rightarrow(a \square b) \alpha-(a \alpha) O(b \alpha)-(o a) 0$ $(a \alpha)-\left(a \square a a^{\prime}\right) \alpha-e \alpha-e \Rightarrow a \square b \quad \in A \Rightarrow(a b \in A$ and $a b$ $\in B] \Rightarrow A-B$

Lastly letting $a b \in$ two cosets $A B$ respectively and letting C be the coset contannge c $-a \square b$ we have $(A \square B) \alpha-C \alpha-c \alpha$ $-(a \square b) \alpha-(a \alpha) \bigcirc(b \alpha)-A \alpha \bigcirc B \alpha$ whach establishes the homo morphism

Problem 4 : The following mapping α is an endoniorphismi (cf Defintion 11 I of Chapter 2) of the cycl e group $C, ~ o f ~ o r d e r ~ 12 ~$ generated by $a a^{\text {sh }} a-\left(a^{3}\right)$ for $\boldsymbol{J} \boldsymbol{I} \rightarrow 34$ and $\forall h \in Z^{*}$ Find $C_{2} \alpha$ and the kemel H of α Discuss C_{z} / H

Problem 42 Find a homomorphism of S_{3} onto the cycle group of order 2 Find the kernel

Problem 4.3. Find all other possible homomorphisms of S_{3}. (Hint: for each homomorphism, there must be an invariant subgroup.)

Theorem 4.2. H is an invariant subgroup of the group $\langle G, \square\rangle$ \Rightarrow the mapping, a, defined by $x \alpha=x \square H, \forall x \in x \square H$ (ı.e., each element is mapped onto the coset to which it belongs), is a homomorphism of G onto G / H. This homomorphism is called the canonical (also uatural) homomorphism of G onto G / H.

Problem 4.4. Prove Theorem 4.2. (Hint: use the proof of the preceding theorem.)

Problem 4.5. Write out in full detail the canonical homomorphism of C_{12} of Problem 4.1 onto C_{12} / H, where $H=\left\{1, a^{4}, a^{8}\right\}$, where 1 is the neutral element.

Problem 4.6. For H and C_{12} as in Problem 4.5, give another homomorphism of C_{12} onto C_{12} / H.

Theorem 4.3. $a \in G$, a group \Rightarrow the mapping $g \alpha=a^{-1} \square g$ $\square a, \forall g \in G$, is an automorphism of G.

Proof: This mapping is $1-1$ since if $a^{-1} \square g \square a=a^{-1} \square g^{\prime}$ $\square a$, then $g \square a=g^{\prime} \square a$ and $g=g^{\prime}$, applying the right and left cancellation laws. This mapping is onto since if $h \in G, a \square h \square a^{-1}$ $=g \in G$ and $a^{-1} \square g \square a=h$. Lastly, $(g \square h) \alpha=a^{-1} \square(g \square h) \square$ $a=\left(a^{-1} \square g \square a\right) \square\left(a^{-1} \square h \square a\right)=g \alpha \square / h \alpha$. Therefore, α is an automorphism of G.

Definition 4.l. An automorphism of a group G, which can be determined by a single element of G, as in Theorem 4.3, is called an iuter automorphism. All other automorphisms of G are called outer antomorphisus.

Problem 4.7. Prove: H, a subgroup of G, is an invariant subgroup of $G \Leftrightarrow H$ is mapped onto itself by every inner automorphism of G.

Problem 4.8. Prove: an abelian group has exactly one inner automorphism.

Problem 4.9. Find all the inner automorphisms of S_{3}. Show that they form a group.

Problem 4.10. Find the set of all automorphisms of C_{12} and show that they form a group.

Problem 411 Prove a cyde group of arder n has exactly $\phi(n)$ utomorphisms

Probifm 41^{7} Find all outer tutomorphasms of S_{y} if any
PROBIEAt 413 The sditive froup of Z has a subgroup f_{3} consisting of all multiples of three I ind $/ / / H_{3}$

Proncem 414 Find all subgroups of Z and the quotient groups of Z w th respect to eqch of them

Pronlim 4 Is Prove $G=S \times T$ where S and T are groups \Rightarrow (i) G his two invirint subgrougs one of which is isomorphac io S and the other one is isomorphic to T
(${ }^{*}$) G / S is isomorphace to $7 / T$ to S
Problem 416 For igroup G of finite order \& ind invarant: subgroup $/ /$ of order h prove th it the order of $G / / /$ is h / h

Thiorem 44 tet $/ /$ be in invimant subgroup of a group ($G \square$) ind let a be the cunonic il homomorphism of G onto G / H $=C$ Then
(1) for etch subgroup λ of G the set of ll elements $E G$ $\exists \mathrm{ka} \in \mathrm{K}$ is subyroup of G which continn $/ f$
(?) the mtpping of conclusion (l) vil I mipping of the set of subgroups of G onto the set of stheroups of G cont aning H
(3) If A is an invimant subgroup of G the corresponding sub group A of G is in invirint subgroup of G and G / K is isomorphte 10G/K
(4) for nay subgroup L of $A / /(/ \cap L)$ is isomorphic to $(H \square L) /$ L

Proof We shall leave the proof of statements (1) and (7) to the reader as an exercise und we shall now prove (3) and (4)
(3) Let β be the canonical homomornh sm of G onto G / h Then $\alpha \beta$ is a homomorphism of G onto G / K The kernel of $\alpha \beta$ is the set of elements of G mappedinto A under α This set of elements by conclusion (1) is denoted by K and so by Theorem 4 I (2) it is an invarint subgroup of G Therefore by Theorem 41 (3) $G / t i$ is isomorphic to G / B
(4) Since H is invanant in $G H \square L$ is a subgroup of G and H is an invaridni subgroup of $\boldsymbol{H} \square L$ Every coset of $H[L$ with respect to H has elements in L Therefore in the cinonical homomorph sm of $H \square L$ onto $(H \square L) / C$ the subgroup L is mapped onto ($H \square L$)/L Therefore by Theorem $41(H \square] L) / L$ is somorphic to the quot ent
group of L with respect to the invariant subgroup consisting of all elements of L which are mapped onto the neutral element. These are precisely the elements of $H \cap L$. Therefore, $(H \square L) / L$ is isomorphic to $L /(H \cap L)$.

Problem 4.17. Complete the proof of Theorem 4.4 by proving statements (1) and (2).

We now consider two subgroups of the group of Theorem 7.1 of Chapter 2.

THEOREM 4.5. The set of all automorphisms of a group $\langle G, \square\rangle$ is a subgroup of the group of all $1-1$ mappings of the set G onto itself.

Proof: Let α, β be automorphisms of G. We shall show first that β^{-1} is an automorphism of G, where β^{-1} is the inverse of β as a 1-1 mapping of G onto itself. Let $a, b \in G$. Then $(a \square b) \beta^{-1} \in G$ and $\left[(a \square b) \beta^{-1}\right] \beta=a \square b$. Also, $\left[\left(a \beta^{-1}\right) \square\left(b \beta^{-1}\right)\right] \beta=\left(a \beta^{-1}\right) \beta$ $\square\left(b \beta^{-1}\right) \beta=a \square b$, since β is an automorphism. Thus we have $\left[(a \square b) \beta^{-1}\right] \beta=\left[\left(a \beta^{-1}\right) \square\left(b \beta^{-1}\right)\right] \beta$. Hence, since β is a $1-1$ mapping, $(a \square b) \beta^{-1}=\left(a \beta^{-1}\right) \square\left(b \beta^{-1}\right)$. Therefore, β^{-1} is an automorphism of G. Hence, by Theorem 7.1 of Chapter $2, \alpha \beta^{-1}$ is a $1-1$ mapping of G onto itself.

Then finally, $(a \square b)\left(\alpha \beta^{-1}\right)=[(a \alpha) \square(b \alpha)] \beta^{-1}=(a \alpha) \beta^{-1} \square$ $(b \alpha) \beta^{-1}=a\left(\alpha \beta^{-1}\right) \square b\left(\alpha \beta^{-1}\right)$. Therefore, $\alpha \beta^{-1}$ is an automorphism of G.

Hence, by Theorem 1.7, the set of automorphisms of G is a group.

Theorem 4.6. The set of all inner automorphisms of a group G is an invariant subgroup of the group of all automorphisms of G.

Problem 4.I8. Prove Theorem 4.6.
Definition 4.2. Let $\langle G, \square\rangle$ be a group. The set of all elements $c \in G \ni \forall \lambda \in G, c \square \wedge=\wedge \square c$ is called the central of G. (Sometimes the center.)

Problem 4.19. Prove: the central of a group G is an invariant subgioup of G.

Problem 4.20. Find the central of S_{3}, and of an abelian group.
ThLorem 4.7. C is the central of a group $G \Rightarrow$ the group of inner automorphisms of G is isomorphic to G / C.

Problem 4.21. Prove Theorem 4.7. (Hint: apply theorem 4.1.)

Probilm 422 Apply Theorem 47 to find all mner auto morphisens of S_{3}

\& TWO FAMII JFS OF GROUPS

So fry we hive constdered only one finte non abelian group S_{3} We are going to consider next some properties of groups which are of smpertance only for mon thelin groups So in order to have ? wider variety of examples illustriting the general theory we interrupt the development of the theory to consder brefly two famultes of groups which art in gener il non tbelinn We shall subsequently discuss bow to andyze groups in feneral in the form in which we now give these groups Let it be assumed it present th it there is nothing contradictory bout the glven rel thons fin both cases the groups are defined in cerms of two generiting elements which s tisfy the given relations and mo atiors excepl those reltions whach are umpled by the gwen ones

Dihectrat proup of order in $D_{2 \text {. }}$. The two senemting elements we a ind b and they sitisfy $a^{t}-1 b=1 a b a b-1$ (where 1 is the neutral element) This list relation miy be written as $a b=b$ a A iypieal e ise is th it of $n=4$ Here it is e isy to show by using the last defining relation that every product of a s ind b s ean be wntten in one of the eight forms $1 \quad b h^{2} b a a b a b^{2} a b^{\prime}$ (For example ba can be obtaned at follows from $a b-b^{\prime} a\left(b^{1}=h\right.$ here) we have bab $b^{\prime} a-a b a=a b$) If my two of those eight etements were equal we should have in xddition il rel ition not implied by the given ones

Quathemongroup of order in $Q_{i n}$ Ag un we have two generators s d dad the generating relations are $d^{\prime \prime}=1 \quad d^{\prime \prime}(+1$ cks $d=1$ or the latter two may be put an somewhat more convenient form as $c-d$ c $d-d$ \& The elements of thos group are $1 d d^{2} \quad d^{2 w}$ 1 r cd $d d^{2} \quad\left(d^{2}\right.$,

Probleat 51 Show that D_{4} is isomorphice to $K_{3} \times \Lambda_{4}$ of Prob lem 92 of Chapter 2 dad is not isomorphic to Q_{4}

Problem 52 Show that D_{8} is isomorphic to $S_{\text {s }}$
Problem 57 Write out the composition tibles for D_{8} and Q_{4} Prove that these groups are not isomorphic

Problem 54 Find all subgroups of D_{x} and determine which are invarant

Proplem 55 Do the same as Problem 54 for Q_{*}

Problem 5.6. For the invariant subgroups found in Problems 5.4 and 5.5 , discuss the corresponding quotient groups.

6. CONJUGATES

Now, as promised, we consider some concepts which are of no importance in abelian groups.

Definition 6.1. Let $\langle G, \square\rangle$ be a group. Two elements a, b $\in G$ (two subgroups H, K of G) are conjugates in $G \Leftrightarrow \exists$ an inner automorphism α of $G \ni a \alpha=b(H \alpha=K)$. The set of all distinct $a \alpha(H \alpha)$, for all inner automorphisms α of G, is called a complete set of conjugate elements (subgroups), or more simply, a complete set of conjugates.

Example 6.1. $\ln S_{3}, \alpha^{-1} \gamma \alpha=\beta \gamma \alpha=\delta$, so γ and δ are conjugates. Also, $\beta^{-1} \gamma \beta=\alpha \gamma \beta=\epsilon$, so γ and ϵ are conjugates. Further, $\gamma^{-1} \gamma \gamma=\gamma \gamma \gamma=\gamma, \iota^{-1} \gamma \iota=\gamma$, so γ is a conjugate of itself. Finally, $\delta^{-1} \gamma \delta=\delta \gamma \delta=\epsilon, \epsilon^{-1} \gamma \epsilon=\epsilon \gamma \epsilon=\delta$, and so, since the images of γ under all inner automorphisms of S_{3} have been considered, $\{\gamma, \delta, \epsilon\}$ form a complete set of conjugates of γ.

Problem 6.1. Prove that the relation of being conjugate is an equivalence relation (both for elements and subgroups).

Problem 6.2. Find all the complete sets of conjugates of elements and subgroups in S_{3}; in D_{8}; in Q_{8}.

Problem 6.3. Prove: H is an invariant subgroup of the group $G \Leftrightarrow H$ coincides with all its conjugates (hence the name, selfconjugate).

Theorem 6.1. Let $\langle G, \square\rangle$ be a group and $a \in G$. The set $N=\{x \mid x \in G, x \square a=a \square x\}$ is a subgroup of G, and if G is a finite group, $(G: N)$ is the number of distinct conjugates of a (including a itself) in G. The subgroup N is called the nomalizer of a in G.

Proof: Since $a \in N, N$ is nonempty. Let $x, y \in N$. Since $y \square a=a \square y$, upon multiplying on the left by y^{-1}, we have $a=y^{-1}$ $\square a \square y$ and then, upon multiplying on the right by y^{-1}, we have $a \square y^{-1}=y^{-1} \square a$. Therefore, $y \in N \Rightarrow y^{-1} \in N$. Hence, we have $\left(a \square y^{-1}\right) \square a=x \square\left(y^{-1} \square a\right)=x \square\left(a \square y^{-1}\right)=(x \square a) \square y^{-1}=$ $(a \square x) \square y^{-1}=a \square\left(x \square y^{-1}\right)$. Therefore, $x, y \in N \Rightarrow x \square y^{-1} \in N$. Therefore, by Theorem $1.7, N$ is a subgroup of G.

Let $x \in A, y \in B$, where A and B are right cosets of G with respect to N and suppose that $x^{-1} \square a \square x=y^{-1} \square a \square y$. Then $a \square$
$r=x \square)^{1} \square a \square$ i and so $\left.a \square x \square i^{1}=x \square\right)^{1} \square a$ Therefore $r \square y^{1} \in \wedge$ ind so x; belong to the sime tight coset Hence of two elements of G provide the sime conjugites of a the two elements belong to the sime night coset Thus elements belonging to different cosets give different conugates Hence the number of conjugates is at least equal to the number of cosets However if $\mathrm{x} \in \mathcal{\mathrm { H }} \mathrm{D} \boldsymbol{z}\} \in N$ \square. then $x=n_{1} \square \ldots=n_{2} \square 2$ where n_{1} and $n_{2} \in N$ and we have $r^{\prime} \square a \square x-\square n_{1}{ }^{1} \square a \square n_{1} \square \&-{ }^{\prime} \square a \square z$ and ${ }^{1} \square a \square$ $3=\star^{1} \square H_{2}{ }^{1} \square a \square A_{2} \square *={ }^{\prime} \square \square \square \Sigma$ Thus elements belongng to the sume right cosel gave the same conjugate of a Therefore the number of conyugates is ($G N$)

Corollary 61 The number of congugetes of an element i $E G$ ifinte group dividen the order of the groun

Theorfa 62 Let $\langle C$ [] be a group and H; subgroup of G The set $N-\{$ t| $\in(, x \square H-H E x\}$ is inubgroup of $G H$ is an invariant subgroup of N and if G is 1 finate broup ($G N$) is the mumber of disincs conjugate subgoouss of H in G gmeluding H itself) The subgroup N is called the normah er of $/ f$ in G

Coroilary 62 The number of subgroups conugate to a subgroup of 3 group G divides the order of G

Probiem 64 Prove Theorem 6 ${ }^{4}$

Problem 64 Prove Coroll ures 61 and 62

Problem 66 Find the normalizer of each element in S_{3} of abm D_{n} of $c d_{\mathrm{m}} \mathrm{Q}_{2}$

Problem 67 Prove that the order of the normalizer of a sub group H is greater than or equal to the order of H

Theorem 63 Let G be a fimte group Then no proper sub group H can contan elements from each of the complete sets of conjugates of elements of G

Proor Suppose $/ /$ were such a subgroup and let h be its order and let δ be the order of G Let \boldsymbol{n} be the order of the normatizer of H in G Then of course since $N \supset H n \geqslant h$ Now H is one of $g l n$ conjugate subgroups each of order h The neurral element is common to all these conjugate subgroups and in G there is a total of at most $1+(g / n)(h-i)$ elements Now the maximum value possible for $1+(g / n)(h-1)$ is g but thas only occurs of $n-h-g$ In this case H is not a proper subgroup Otherwase this quantity is less than g
and so the complete set of conjugate subgroups of which H is a member cannot contain all the elements of G. Therefore, there must be additoonal elements of G, which is impossible.

Problem 6.8. Examine S_{3}, D_{8}, Q_{8} in light of Theorem 6.3.

7. DIRECT PRODUCTS

Let us consider the cyclic group of order 6 generated by its element a. We write it multiplicatively as $G=\left\{1, a, a^{2}, a^{3}, a^{4}, a^{5}\right\}$ where $a^{6}=1$. Let us also consider the following subgroups of $G: H_{1}=\left\{1, a^{2}, a^{4}\right\}$, $H_{2}=\left\{1, a^{3}\right\}$. The first subgroup is generated by a^{2}, the second by a^{3}. We easily verify that each element of G can be represented as a power of a^{2} times a power of a^{3} as follows: $a=\left(a^{2}\right)^{2}\left(a^{3}\right)^{1}, a^{2}=\left(a^{2}\right)^{1}\left(a^{3}\right)^{0}$, $a^{3}=\left(a^{2}\right)^{0}\left(a^{3}\right)^{1}, a^{4}=\left(a^{2}\right)^{2}\left(a^{3}\right)^{0}, a^{5}=\left(a^{2}\right)^{1}\left(a^{3}\right)^{1}, a^{6}=\left(a^{2}\right)^{0}\left(a^{3}\right)^{0}=a^{0}$ $=1$. We leave it to the reader to verify that this representation is unique of we restrict ourselves to using exponents which are nonnegative and less than the period of $\left(a^{2}\right)$ for any exponent placed on $\left(a^{2}\right)$, and less than the period of (a^{3}) for any of its exponents, and is unique as far as the elements used are concerned. This decomposition of a cyclic group of nonprime order is frequently possible as is established by the following theorem.

Theorem 7.1. Let $\langle G, \square\rangle$ be a group and let $z \in G$. Then z is of period $m u$ where $(m, u)=1, m>1, u>1 \Rightarrow \exists \lambda, y \in H$, the cyclic subgroup of G generated by z, such that
(1) $z=\lambda \square y$
(2) the period of x is m, the period of y is n
(3) $\lambda \square y=y \square x$
(4) this iepresentation is unique.

Proor: Let $u=z^{\prime \prime}, v=z^{\prime \prime}$. Then $u \square v=v \square u$, since u and v are powers of the same element. Also $u^{m}=e=v^{n}$, where e is the neutral element of G, and since z is of period $m u, u$ must be of period m and v of period n.

Since $(m, n)=1, \exists s, t \in Z \ni s m+t n=1$ and $(s, n)=1,(t, m)$ $=1$. Hence, $z=z^{m+m}=\left(z^{\prime \prime}\right)^{t} \square\left(z^{m}\right)^{\prime}=u^{t} \square v^{5}$. By Problem 2.15, u^{\prime} is of period m, and $v^{\prime \prime}$ is of period u. Thus, if we take $\lambda=u^{\prime}, y=v^{\prime}$, we have the first three statements of the conclusion established.

To prove uniqueness, let $z=\lambda \square y=\lambda_{1} \square y_{1}$, where $\lambda \square y=y$ $\square x_{1}, \lambda_{1} \square y_{1}=y_{1} \square \lambda_{1}, x$ and x_{1} are of period m, y and y_{1} are of period n. Then, with s and t as before, we have $\lambda^{t n} \square y^{\prime \prime \prime}=x_{1}{ }^{2 n} \square y_{1}{ }^{t n} \Rightarrow x^{t n}$ $=\lambda_{1}^{\prime \prime \prime}\left(\right.$ since $y . y_{1}$ are of period $\left.n\right) \Rightarrow \lambda^{1-\cdots m}=\lambda_{1}{ }^{1-s m} \Rightarrow x \square\left(\lambda^{m}\right)^{-s}=x_{1}$ $\square\left(\lambda_{1}{ }^{\prime \prime \prime}\right)^{-\varepsilon} \Rightarrow 1=\lambda_{1}$. Then, since G is a group, $y=y_{1}$.

Problem 7 I State and prove Theorem 71 with adduon as the law of compostion

Problem 72 Apply Theorem 7 Ito $z=a 1^{2}$ w the cyche group of order 24 senerated hy a

Probiem 73 Iet $\langle G, \square\rangle$ be a cyclic group of order mn with $(m, n)=1 m>1, n>1$ Prove that there exist two proper sub groups H_{1}, H_{2} of G such that every element of G can be expressed unquiely as a product of an clement of Π_{1} and an element of Π_{2}

Dffinition $71 \mathrm{ct}(G, \square)$ be a group let $a, b \in G$, and let $H_{1} H_{2}$ be sutberoups of G Then
(1) a and b arc permetable $\Leftrightarrow a \square b=b \square a$
(2) a and H_{1} arc pernutable $\Leftrightarrow a \square H_{1}=H_{1} \square a$
(3) H_{1} and H_{2} sre permutable \rightarrow every element of H_{1} is permutable with H_{2} and every element of H_{2} is perautable with H_{1}

Problem 74 Prove that of and a subgroup $/ /_{i}$ of a group (G ロ) are permutable $₫ \forall h_{1} \in H_{1}+h_{t} \in H_{1} \Xi a \square h_{1}=h_{1} \square a$

Problem 75 Prove that a subgroup H of a group G is invan ant if and only if every element of G is permutable with if

Proaicm 76 Prove thall if $/$ is a subgroup of a group G, then every element of $/ /$ is permutable with $/ /$

Derinition 72 A group (G) is the direct product (or direct sum if the law of composition is addition) of its subgroups, H_{1}, $\boldsymbol{H}_{2}, \quad H_{n} \Leftrightarrow$
(1) every element of H_{4} is permutable with every element of H_{s}

(2) $x \in G \Rightarrow \exists$ ungue $n_{t} \in H_{1} \ni r=\square_{i=1} H_{i}$ The element μ_{1} in this representation is called the component of x in $/ f$,

If the law of composition in G is additton and if G is the drect sum of the subgroups H, K we whte $G=H \oplus \Lambda$ with obvious gen eralization to more than two subgroups

Problem 77 Show that the cyctic group of order 12 is the direct product of cyclic subgroups of orders 3 and 4 Find the group product of a cycle group of order 3 and a cycle group of order 4 and show that it is somorphic to the preceding group

Problem 78 Show that the group product of two cycle groups of relatively prime orders is a cychic group of order the product of the orders of the orignal groups and show that it is the dreet product of two subgroups isomorphic to the ongmal groups

Problem 7.9. Show that any cyclic group of order $m n$, where $(m, n)=1, m>1, n>1$, is the direct product of two cyclic subgroups of orders m, n.

Problem 7.10. Show that the cyclic group of order 9 is not the direct product of two of its subgroups. Generalize.

Рroblem 7.11. Show that the 4 -group (any group isomorphic to the group of Problem 10.1 of Chapter 2) is the direct sum of two cyclic subgroups of order 2.

Problem 7.12. Show that the direct sum of two abelian groups is abelian.

Problem 7.13. Prove: $G=H \oplus K, H, K$ of orders h, h, respectively $\Rightarrow G$ is of order $h h$. Generalize.

Problem 7.14. Find all abelian groups of order 8.
Problem 7.15. Prove: $G=H \oplus K \Rightarrow G / H$ is isomorphic to $K, G / K$ is isomorphic to H.

Theorem 7.2. The group G is the direct product of its subgroups $H_{1}, H_{2}, \ldots, H_{n} \Leftrightarrow$
(1) the subgroups $H_{1}, H_{2}, \ldots, H_{n}$ are invariant subgroups of G
(2) G is generated by the subgroups $H_{1}, H_{2}, \ldots, H_{n}$ (cf. Defimution 2.1.)
(3) the common part of each H_{2} with the subgroup H_{2}^{\prime}, generated by all the $H_{,} i \neq j$, is $\{e\}$, the subgroups consisting of the neutral element of G.

Proof: (In this proof, numbers prefixed by D refer to conditions of Definition 7.2 and numbers prefixed by T refer to conditions of Theorem 7.2.)

The theorem is trivially true if $n=1$, so we suppose that $n \geqslant 2$. Consider the implication \Rightarrow. First, we note that $\mathrm{D} 2 \Rightarrow \mathrm{~T} 2$. To show that T 3 holds, let c belong to the common part of H_{1} and $H_{1}{ }^{\prime}$. Then $c=h_{2} \square \cdots \square h_{n}$, where $h_{i} \in H_{i}, i=2,3, \ldots, n$, and also $c=h_{1}$ $\in H_{1}$. Then we have two distinct representations of c, contrary to D2. The same is true for any i. Therefore, condition T3 holds.

To prove T1, let $h_{1} \in H_{1}$ and $g \in G$. Then $g=h_{1} \square h_{2} \square \cdots$ $\square h_{1} \square \cdots \square h_{n}$ by D2, so $g^{-1} \square h_{1} \square g=h_{n}{ }^{-1} \square h_{n-1}{ }^{-1} \square \cdots \square$ $h_{1}^{-1} \square \cdots \square h_{1}^{-1} \square h_{2} \square h_{1} \square \cdots \square h_{n-1} \square h_{n}=h_{2}^{-1} \square k_{1} \square h_{2}$ by condition D1) and this last element belongs to H_{1}. Therefore, H_{i} is invariant in G.

Consider now the implication \Leftarrow. To prove D1, let $h_{1} \in H_{1}$ and $h_{j} \in H_{j, i} \neq j$. Then $h_{l}^{-1} \square h_{j}^{-1} \square h_{i} \in H_{j}$, since H_{j} is invariant, and
simalarly, $h_{j}^{-1} \square h_{1} \square h_{j} \in H_{i}$ Hence, $\left(h_{1}^{-1} \square h_{j}^{-1} \square h_{1}\right) \square h_{j} \in$ H_{f} since each of the two indicated factors $E H_{s}$ and H_{f} is a group, and sumularly, $h_{1}^{-1} \square\left(h_{5}^{-1} \square h_{1} \square h_{j}\right) \in H_{i}$ Now by T3, $H_{i} \cap H_{5}$ $=\{e\}$ Therefore $h_{t}{ }^{2} \square h_{i}^{-1} \square h_{i} \square h_{j}=c$, and so by multuplying on the left by $h_{\text {, }}$, and then by $h_{\text {je }}$ we get successively, $h_{i}^{-1} \square h_{t} \square h_{1}=h_{1}$ $h_{i} \square h_{s}=h_{,} \square h_{i}$ Therefore, condition DI holds

To prove D2. we whserse that T2 gives us at least one represen tation of each x in G in the desired form (using Dit is necessary) Let us suppose thit we have two such say, $x=H_{1} \square i_{2} \square$. $\square u_{n}=i_{1}$ $\square i_{i} \square \square i_{n}$, where at least one $u_{i} \neq v_{i}$, sdy $t_{1} \neq i_{1}$ (since the us are permutable and so are the 1 's, it makes no differenee whtch we suppose are unequal) $\boldsymbol{u}_{1} 1_{1} \in H_{1}$ Then we have $i_{i}{ }^{+1} \square t_{1}=(1, \square]$
$\left.\square i_{n}\right) \square\left(u_{*}{ }^{1} \square \square u_{n}{ }^{\prime}\right)=\left(i_{t} \square u_{t}^{-1}\right) \square \square\left(i_{n} \square t_{*}^{-1}\right)$, by permutubility and here the element on the leff $\in H_{1}$ and the one on the right $\in H_{1}$ This is impossoble by T3 unless each element is equal to: Then $\mu_{1}=1$, ete Therefore D2 holds

Theorem 73 in Theorem 72 eondinon (3) may be replaced by
(4) the common part of $H_{1} t=2.3 \quad n_{\text {, with }}$ the subgroup generated by $H_{1} \quad \| H_{1-1}$ is $|e|$

Problem 716 Prove Theorem 73

8 PRODUCTS OF SUBGROUPS OF GROUPS

We have been eonsidering the direet produets of two or more sub groups of a group and among other eonditions the subgroups had no elements in eommon otier th in the neutral element und each element of one subgroup was permutable wath every element of every other subgroup Under these conditons the product was a subgroup and in the ease of firute groups uts order was the product of the orders of the subgroups We shall now consider what happens when we drop these two conditons and consider merely the product of two sub groups, H and k in accordance with Defintion 3 t Theorem 81 gives us the result about the number of elements and Theorem 82 gives the condition under which the prodact is a group

Theorem $81 \quad$ Let A and B be finite subgroups of order a, b, respectively, of a group $\langle G \square\rangle$ and $C=A \cap B$ be of order c. Then the product $A \square B$ has exaetly ab/c elements

Proof ByTheorem $33 B=\left(C \square b_{1}\right) \cup\left(C \square b_{2}\right) \cup U$

$n=b / c$. Thus $A \square B=\left[(A \square C) \square b_{1}\right] \cup \cdots \cup\left[(A \square C) \square b_{n}\right]$. Now by Problem 3.10, $A \square C=A$, since $C \subset A$. Hence we have $A \square B=\left(A \square b_{1}\right) \cup\left(A \square b_{2}\right) \cup \cdots \cup\left(A \square b_{n}\right)$. Further, $(A \square$ $\left.b_{1}\right) \cap\left(A \square b_{3}\right)=\varnothing$, if $i \neq j$, since if $x \in\left(A \square b_{2}\right) \cap\left(A \square b_{3}\right), i \neq j$, we should have $x=a_{1} \square b_{1}=a_{2} \square b_{3}$, where $a_{1}, a_{2} \in A$. Then $a_{2}^{-1} \square$ $a_{1}=b_{j} \square b_{1}^{-1}$ would belong both to A and to B and so to C, but this would make $C \square b_{2}=C \square b_{\jmath}$, contrary to the representation of B given at the beginning. Hence, the sets $A \square b_{1}$ are disjoint, there are $n=b / c$ of them and there are a elements in each one. Hence, the number of elements in $A \square B$ is $a \cdot b / c$.

Theorem 8.2. Let A and B be subgroups of a finite group (G, \square). Then $D=A \square B$ is a subgroup of $G \Leftrightarrow A \square B=B \square A$.

Proof: Consider the implication \Rightarrow. Let $D=A \square B$ be a subgroup of G, and let $a \in A, b \in B$. Then $a^{-1} \in A, b^{-1} \in B$ and so $a^{-1} \square b^{-1} \in A \square B$. Since D is a group, $\left(a^{-1} \square b^{-1}\right)^{-1}=b \square a \in D$. Thus, $\forall a \in A, \forall b \in B, b \square a \in A \square B$. Therefore, $B \square A \subset$ $A \square B$. However, since the number of distinct elements in $A \square B$ and $B \square A$ is finite and the same (obviously from Theorem 8.1), $A \square B$ $=B \square A$.

Now consider the implication \Leftarrow. Let $A \square B=B \square A=D$. Then $D^{2}=(A \square B) \square(A \square B)=A \square(B \square A) \square B=A \square(A \square B) \square B$ $=A^{2} \square B^{2}=A \square B$, by Problem 3.8. Hence also by Problem 3.8, D is a subgroup of G.

We shall now consider a special case of the product of two subgroups. Let H be a subgroup of order h of $\langle G, \square\rangle$, and K a cyclic subgroup of G generated by the element a of period n, and let a^{m} be the lowest positive power of a which is in H. We shall first prove that $m \mid n$. If we let $d=(m, n)$, we have by Theorem 17.3 of Chapter $2, s m+t n$ $=d$, where $s, t \in Z$. Now $a^{d}=a^{s m+t n}=a^{\mathrm{mm}} \square\left(a^{n}\right)^{t}=a^{s m}$ and so $a^{d} \in$ H. Hence, d cannot be less than m and so $d=(m, n)=m$. Therefore, $m \mid n$.

Now since $a^{m} \in H$, its period n / m must divide h. We have now proved

Theorem 8.3. H is a subgroup of order h of a group $G, a \in G$, a has period $n, a^{m} \in H$ and $a^{k} \notin H$ for $0<h<m \Longrightarrow m \mid n$ and $n / m \mid h$.

Theorem 8.4. Let H_{1} and H_{2} be two subgroups of a group G with the properties:
(1) each element of H_{1} is permutable with H_{2} and each element of H_{2} is permutable with H_{1}.
(2) $H_{1} \cap H_{2}=\{e\}$

Then each element of H_{1} is permutable with each element of H_{2}
Corollary 8 : If H_{1} and $\|_{2}$ are invanant subgroups of a group G and if $I_{1} \cap H_{2}=\{e\}$, where e is the neutral element of G, then $H_{1} \square H_{2}$ is the direct product of H_{2} and H_{2}

Tincorrm 85 If $H_{1}, ~ / I_{2}$ are invartant subgroups of a group G, then the group generated by H_{1} and H_{t} is $H_{1} \square H_{2}$

Pronlest 81 Prove Theorem 84 (Hint let at $\in H_{1}, b \in H_{s}$ and consider $a^{-1} b^{-1} a b$ as in the proof of Theorem 72)

Problem 82 Prove Corollary 81
Pronlem 83 Prove Theorem 85 generalize, and prove your generulization

9 FREE GROUPS

Thus fur the methods we have used for finding actual specific groups have been thove of consuierang a set of $1-1$ mapprings of a set E, subsets of Z and of formong product groups or quotient groups from groups already hnown We shall now conssder another method Certan aspects of the method may remand the reader of the methods used in the proofs of Theorems 13 and 15 but it should be bome in mind that in those proofs we were operating in a group or a semigroup from the very beginning Here we are not

Definition 91 Let A be a set and $E=A \times\{1,-1\}$ We shall write the element of E is r where $a \in A$ and $\in \in\{1,-1\}$ A finte sequence of elements of E is a uord Two etements a_{i}, a_{1} of a word are called adjacent if and only if exther $t=j+1$ or $j=1+1$ We shall write adjacent elements in a word next to each other without commas etc Thus a word may be written in the form $n=x_{r_{4}}{ }^{a_{10}} r_{r}{ }^{\text {maze }} \quad r_{r_{n}}{ }^{a_{1}}$ where $\alpha_{1}= \pm 11_{1}=12 \quad n$ The word u is a reduced llord if and only if no symbol $x_{t}{ }^{+1}$ is adjacent to $x_{c}{ }^{\prime}$ In a reduced word μ, the number of elements actually present is the fength of she word and is denoted by $L(11)$ Further the null set is called the empr) word, and is denoted by w_{0} and $L\left(n_{0}\right)=0$ Lastly, the product of the words

$$
x_{e_{n}+w_{2}} y_{n+1} \text { where } e_{1}=\varepsilon_{1} y_{1}=\alpha_{n}, \text { for }=1.2, \quad \text {, } 3, \text { and } e_{1}=d_{x-r}
$$ $\gamma_{1}=\beta_{*}$ for $\Delta=n+I n+2, \quad, n+m$

The set M of all words formed from E with product defined as above, is easily seen to be a semgroup with a neutral element, since
it is easy to prove that this law of composition is associative. M, however, is not a group since no element other than the neutral element has an inverse. We shall now proceed, as we have often done before, to introduce an equivalence relation in M, and then prove that the quotient set is a group.

DEFINITION 9.2. Two words, w_{1}, w_{2} are adjacent \Leftrightarrow either $w_{1}=u x_{c}^{\delta} x_{c}{ }^{-\delta} v$ and $w_{2}=u v$, where u and v are words, or $w_{1}=u v$ and $w_{2}=u x_{c}{ }^{\delta} x_{c}{ }^{-\delta} v$, where $\delta= \pm 1$. Two words are equivalent, written $w_{1} \equiv w_{2} \Leftrightarrow \exists$ a finite set of words $u_{1}, u_{2}, \ldots, u_{m} \ni u_{1}$ and u_{l+1} are adjacent, $i=1,2, \ldots, m-1, w_{1}=\|_{1}$ and $w_{2}=u_{m}$.

We leave to the reader the task of showing that \equiv is an equivalence relation.

Problem 9.1. Prove that the product of words is associative.
Problem 9.2. Prove that \equiv is an equivalence relation.
Problem 9.3. Find a reduced word equivalent to $w_{1} w_{2}$ where $w_{1}=x_{3}{ }^{+1} x_{7}{ }^{-1} x_{1}^{+1} \lambda_{4}{ }^{+1} x_{4}{ }^{+1}, \quad w_{2}=x_{4}{ }^{-1} x_{5}{ }^{+1} x_{5}{ }^{-1} x_{173}{ }^{+1} x_{5}{ }^{-1} x_{3}{ }^{-1} x_{7}{ }^{-1}$. Do the same for $w_{2} \omega_{1}$. In both cases, find the intermediate words.

Problem 9.4. Proceed as in Problem 9.3 for

$$
w_{1}=\lambda_{1}{ }^{+1} \lambda_{1}{ }^{+1} x_{1}{ }^{+1} x_{2}{ }^{-1} x_{2}{ }^{-1} \lambda_{1}{ }^{+1}, w_{2}=x_{1}{ }^{-1} x_{2}{ }^{+1} \lambda_{2}{ }^{+1} x_{1}{ }^{-1} .
$$

Problem 9.5. Find equivalence classes which are the inverses of the classes containing w_{1} and w_{2} of Problem 9.4.

Theorem 9.1. The equivalence relation of Definition 9.2 is compatible with the product as defined in Definition 9.1.

Proof: Let $f \equiv h$ and $g \equiv h$, and let $f=u_{1}, l_{2}, \ldots, u_{n}=h$ be a set of words such that u_{i}, u_{i+1} are adjacent for $i=1,2, \ldots, n-1$, $g=v_{1}, v_{2}, \ldots, v_{m}=h$ be a set of words such that v_{2}, v_{j+1} are adjacent for $j=1,2, \ldots, m=1$. Then $u_{1} g, u_{i+1} g$ are adjacent for $i=1,2, \ldots$, $n-1$, and $l l v_{j}, l v_{j+1}$ are adjacent for $j=1,2, \ldots, m-1$. Hence, since $u_{n} g=h g=h u$, we have the set of words $f g, u_{2} g, \ldots, u_{u-1} g, l \iota g, h v_{2}$, \ldots, m_{m-1}, hh in which each consecutive pair is a pair of adjacent words. Therefore, $f g \equiv h k$.

Theorem 9.2. The quotient set of M of Definition 9.1 with respect to the equivalence relation of Definition 9.2 is a group F called the free group generated by the set A.

Proof: Let F be the quotient set. Since M is a semigroup, by Theorem 9.1 above and Theorems 12.1 and 12.2 of Chapter 2, F is a semigroup. Since M has a neutral element w_{0}, the equivalence class

 inverse for the equivilence clas contwning in Therefore F is a group

Definition 93 The cirdinal number of the elements in the set A is called the ranh of the free group F generited by A

Prontem 96 Prove thit free group of runk 1 is cycice and is Isomorphic to the tdeltive group of 7

Thenreay 9 Inafree group \boldsymbol{F} no element except the neutral element has finste period

Proor Let $n-x^{\text {a }} x^{m} x_{m}^{\prime \prime \prime}$ be 1 word not equivalent

 other Then we let $-x_{t}$, ${ }_{k}$ a and we have $V s \in Z^{*}$
 * It is clear from Defint on 9^{\prime} 'th two words ore equivalent if and only if we ean go frem one to the other by inserting or suppressing a finte number of $x{ }^{4} r$ " So if two words are equiv ilent at least one of them must have one or more (unsuppressed) $x^{4} x_{c}{ }^{3}$ Two reduced words do not Thus two d stunct reduced words must be mequivalent Hence "is not equivalent to the empty word

Theorems 94 Every group is isomozphe to a quotient group of a free group

Proof Let G be a group and M a set of generators of G (there always exists o set of generators for any group of necessiry tahe all the elements of G as M) Let W be any set of elements such that there exists a 1 I mapping a of $t y$ onto M and let F be the free group generated by W^{\prime} If we then for $x \in F$ derrote $x \alpha$ by a_{c} we have a mapping of F onto G such that ($x^{0} \quad x_{r_{n}}{ }^{{ }_{n}}$) $\alpha-a_{c}{ }^{a} \quad a_{c_{n}}{ }^{{ }^{*}}$ which is obviously a homomorphism of F onto G Hence by Theorem $41 G$ is tsomorphic to F / H where H is the normal subgroup of F consustung of all equivalence classes contunng all words $x_{c}{ }^{B} \quad \boldsymbol{x}_{c_{n}}{ }^{{ }_{n}}$ whose images $a^{\circ} \quad{ }_{c_{*}}{ }^{B_{n}}$ are all equal to the neutral element of G

Definition 94 Let $x_{c}{ }^{*} \quad x_{c_{0}}{ }^{\beta}{ }^{\prime}$ be any word in H of the above proof Then the equation $a_{c}{ }^{E} \quad a_{c_{d}}{ }^{\prime \prime}=1$ implied by the iso morphism α is a relation between elements of M Let K be a set of
elements such that the normal subgroup H of F of the above proof is generated by K, then the set of relations in G corresponding to the elements of K is called a set of defining relations of G.

Example 9.1. Let G be the cyclic group of order n. Here we may take $M=\{a\}$, where a is a generator of G. We may take $W=\{s\}$. Then H will consist of the set $\left\{s^{h \prime \mu}\right\}, \forall h \in Z$. Since $s^{\prime \prime}$ is a generator of H, a set of defining relations of G will consist of the single equation $a^{n}=1$.

Problem 9.7. Let G be the abelian group of order 9 which is the direct product of two of its cyclic subgroups of order 3 . Find a quotient group of a free group isomorphic to G.

Using Theorem 9.4 we can start with a group and find a set of defining relations. However, we can also proceed in the opposite direction as well. That is, we may start with a set A of symbols and an arbitrary set of relations equating certain words formed from these symbols to 1 , and there will always be a group for which these relations form a set of defining relations. For, we may take the free group generated by A and the normal subgroup generated by the nonempty sides of the given equations and the quotient group will be a group with the desired defining relations.

Example 9.2. Cyclic group of order n, C_{n}. Here we need only one defining relation; $a^{n}=1$ where a is a generator of C_{n}. If any lower power of a were 1 , this would imply an additional relation.

Example 9.3. Dihedral group of order $2 n, D_{2 n}$. (See Section 5 above.)

Example 9.4. Quaternion group of order $4 n, Q_{4 n}$. (See Section 5 above.)

Problem 9.8. Give defining relations for the group of Problem 9.7.

Problem 9.9. Discuss the general groups $D_{2 n}$ and $Q_{4 n}$.
Theorem 9.5. If a group G is given by a set of defining relations and a group G^{\prime} is given by a set of defining relations, which includes all the defining relations of G, then G^{\prime} is isomorphic to a quotient group of G.

Problem 9.10. Prove Theorem 9.5. (Hint: represent G, G^{\prime} as quotient groups of the same free group.)

10 SYLOW THEOREMS

The converse of I agrange s Theorem holds for cyelic groups, but not for all groups We shall, in the next section, give an example of a group of order 12 which does not have a subgroup of order 6 , although $6 \mid 12$ In the present section we shall consuder a theorem which is a prial converse of Lagrange's Theorem

Derinition 101 Let G be a finite eroup of order n and let $p \in Z^{*}$ where p is a prime Further, let $p^{* \prime}$ be the highest power of p (with positive exponent) which divides n Then a subgroup $/$ of G is ${ }^{4} S_{3}$ lon subgroup \Leftrightarrow the order of $/ /$ is \boldsymbol{p}^{m}

Thicorem 101 Let σ be d finte group of order n and p be a positive rational prime dividing n Then G has at least one Sylow subgroup of order p^{m}

Proof if $a=p^{m}$, the theorem is obviously truc so we shall suppose that $n \neq p^{m}$ The theorem is obviously truc if $n=2$, and we shall proceed by induction by supposing thit it is true for all orders less than n
(1) The eentral of O consists of the neutral element alone Then by Problem 61 , the etements of 6 fall into disfoint scts of conugate elements Let $h_{1} h_{d}, \quad h_{\text {, be the numbers of clements in these scts }}$ In the case we are considering, one of the h_{4} say h_{1}, is 1 (this is the number of elements in the set contanng the neutral element), and all the other h_{1} are greater than 1 We have then $n=1+h_{2}+h_{3}$ $+h_{r}$ Since $p \mid n$, and $p \| 1$ there must be at least one $h_{1}, 1>1$, say h_{p}, $\exists p / h_{j}$ Now by Thcorem $61 \mathrm{n} / \mathrm{h}_{\mathrm{J}}$ is the order of a subgroup of G, namely the normaluzer \mathcal{N} of one of the elements of the complete set of conjugate elements whose number is h, Thus $p^{m} \mid(n / h$,$\} and so by$ induction hypothesis N has a subgroup of order p^{n} and this subgroup is, of course, a subgroup of G
(2) The central of G has elements in addition to the ncutral element Let s be one such element and we may suppose that its period is a prime for if s is of period $r k$, where r is a pame, then s^{h} is of period r, and s^{*} belongs to the central
(2a) s is of period p Let S be the cyclic subgroup of G gencrated bys Then G / S is a group of order n / p and $p^{m-1} \mid(n / p)$ and so G / S has a subgroup S^{\prime} of order p^{m-1} Then by Theorem $44 G$ has a subgroup H corresponding to S, and the order of H mast be p^{m}
(2b) s is of penod $q \neq p$ Let S be as before Then the order of G / S is divisible by $p^{\text {nn }}$ and if it is not p^{m}, then. as before, G has a
proper subgroup whose order is divisible by p^{m} and so by induction hypothesis, this subgroup, and G also, has a subgroup of order p^{m}.

If the order of G / S is p^{m}, then G is of order $p^{m} q$. Since $s \in$ the central, C, of G, every element of $S \in C$. Thus, for each element of G, the normalizer contains S. Hence, the order of each normalizer is divisible by q, and so, by Theorem 6.1, no h_{1} (of case 1) is divisible by q. Hence, in the notation of case $1, p^{m} q=1+h_{2}+\cdots+h_{4}$, where none of the h_{l} is divisible by q, and since there are at least q ones, there must be more than q ones. Thus there must be an element $t \in C \ni t \notin S$. The period of t must be divisible by p, and not by q, since G cannot contain a subgroup of order q^{2}. (There would be a subgroup of this order, since $t, s \in C$, and we may suppose, as before, that the period of t is p.) Let T be the cyclic subgroup of G, generated by t. Then G / T is of order $p^{m-1} q$ and so it contains a subgroup of order p^{m-1}. Hence, G has a subgroup of order p^{m}.

Corollary 10.1. (Cauchy's Theorem.) If a positive rational prome p divides the order of a finte group G, then G has elements of period p.

Corollary 10.2. If p^{h} divides the order of a finite group G, where p is a positive iational prime, then G has a subgroup of order p^{h}.

Problem 10.1. Prove Corollary 10.1.
Problem 10.2. Prove Corollary 10.2. (Hint: show by using the relation $n=1+h_{2}+\cdots h_{r}$ of the proof of Theorem 10.1 , that a group of order $p^{\prime \prime \prime}$ has a central of order at least p; then proceed by induction.)

Example 10.1. We shall determine all groups of order p^{2}, where p is a positive rational prime. Let G be such a group. If G has an element of period p^{2}, then G is cyclic. If not, then its $p^{2}-1$ elements, other than the neutral element, must all be of period p. A subgroup of ol der p contains $p-1$ elements of period p and none of these can be in any other subgroup of order p. Therefore, there must be $\left(p^{2}-1\right) /(p-1)=p+1$ subgroups of order p. By Corollary 6.2 , the number of subgroups in a complete set of conjugate subgroups must divide the order of the group, namely, p^{2}, and so at least one of these $p+1$ subgıoups must be invariant. Let a be a generator of this subgroup G, and let b be any element of penod $p \ni b \in H$. Then $b^{-1} H b=H$. Hence, $b^{-1} a b=a^{\text {N }}$, for some $h \in Z^{*}, 0<h<p$. Hence, $b^{-1} a b^{i}=a^{h^{1}}$ and finally, $b^{-p} a b^{p}=a^{k^{p}}=a \Rightarrow k^{p} \equiv 1 \bmod p$. But, $h^{p-1} \equiv 1 \bmod p$ and so $h \equiv 1 \bmod p$. But, $0<h<p$ and $h \equiv 1 \bmod p$
$\Rightarrow h-1$ Therefore $a b=b a$ ind so G is an gbelitn group which is either cyetic or the direct product of two cyelic subgroups of order p

Problem 103 By using the first Sylow Theorem and the type of re sonng used in the above example show thit if a group has order $p q$ where p and q ure destanct positure rational pnomes with $p<q$ then either G is cyclic and this is the only possible edse if $q \neq 1 \bmod p$ or $1 \mathrm{f} q-1 \mathrm{mod} p$ G may be non abelan (Hint int ins tatier ease if $a b$ tre elements of periods $p q$ respectively then the defining relitions witi be $a^{n}=b^{a}=1 \quad a \quad$ ' $b a-b^{\beta}$ where β is a root of $\beta \equiv 1 \bmod q \beta \neq 1$)

Theorim 102 Let G be a finite group of order n ind p be a positive rationat prime such that p^{n} is the heghest power of p dividing n Then the Sylow subgroups of order $p^{\text {n }}$ form a complete set of con jugate subgroups and the number of them is congricnt to 1 mod p

Proof (1) We shall first prove that if $/ f$ is i Sylow subgroup of G of order p^{n} then the only elements of G which are permutible with H dnd h ive periods which re powers of p tre the elements of H

Let s be an elemest of period p^{2} permutible with $I l$ and let K be the subgroup generated by; Then $/ / \Lambda-\lambda / /$ ind so by Theorem $82 J / K$ is isubgroup of 6 If the lowest rosinve power of ; which If in H is $\xi^{\prime \prime}$ (cf first conclusion of Theorem 8 i) then $H \cap k$ is of order p^{k} " (ance the powers of , which ire in $J /$ will be $\left(s^{\nu h}\right)^{\prime} J=12$
$\left.p^{k}\right)^{\prime}$ and so by Theorem 8 I the order of $/ / h$ is $p^{n} p^{2} / p^{k}$ " $=\rho^{n} n>p$ which is impossible since H is 1 Sylow subgroup Therefore, $\in H$
(2) We shatl next prove th it if H ind \boldsymbol{H} are two subgroups of order p " and if $h_{1}=H \cap H$ is of order p^{*} then the elements of H tr insform H_{1} into exacily $\rho{ }^{H}$ conjug, te subgroups

By the result gust established the only elements of $/ /$ which trans form H_{1} into itself will be the elements of A_{1}, There are p cosets of $/ t$ with respect to A and the elements of each coset obviously transform H into the same conjugate subgroup while the elements of two different cosets give different subgroups conjugate to H_{1} (For If $h_{1} H_{1} h_{\mathrm{t}}-h_{2} H h_{2}$ then $\mathbf{H}=h_{1} h \quad \| h_{2} h^{1}-\left(h_{2} h_{1}{ }^{\prime}\right){ }^{\prime} H$ ($h h^{j}$) ind so $h t ; \in$ Thus $h_{1} h_{2}$ wre members of the same right coset
(3) If $H H$, are Sylow subgroups of order p and H is conju g te to H then by (2) there are at least $1+p$ " distinct subgroups conjugate to H namely $/ /$ itself and the $p^{* a}$ subgroups conjugate to H, obtained in (${ }^{7}$)
(4) By induction it follows easily that the total number of subgroups conjugate to H is of the form $1+p^{m-\beta_{1}}=p^{m-\beta_{2}}+\cdots+p^{m-\beta_{n}}$ and so is conjugate to $1 \bmod p$.
(5) If there exists another Sylow subgroup L, and if L is not conjugate to H, then by continued application of (2), we find that the number of Sylow subgroups in the complete set containing L is the sum of positive powers of p and so is congruent to $0 \bmod p$. But the above reasoning now applied to L instead of H shows that the number is congruent to $1 \bmod p$. Therefore, the Sylow subgroups of order p^{m} form a complete set of conjugate subgroups.

Corollary 10.3. There is only one Sylow subgroup H of order p^{m} of $G \Leftrightarrow H$ is an invariant Sylow subgroup of G.

Definition 10.2 . A group G is simple if and only if no proper subgroup of G is invariant.

As examples of application of the second Sylow Theorem:
Example 10.2. We shall show that no group of order 30 is simple. Such a group G would have $5+1$ Sylow subgroups of order 5 and so 6.4 elements of period 5 . Also, there would be at least $1+3=4$ Sylow subgroups of order 3 containing $4 \cdot 2=8$ elements of period 3. We have now, including the neutral element, at least $24+8+1$ distinct elements and we have not yet considered the Sylow subgroups of order 2 . We have thus too many elements and so G cannot be simple.

Example 10.3. A group G of order $p q$, where p and q are distinct primes such that $p \neq 1 \bmod q$ and $q \neq 1 \bmod p$ is abelian. For, the number of Sylow subgroups of order p must divide q by Theorem 6.2 and also must be $\equiv 1 \bmod p$ by Theorem 10.2. Therefore, by the condition $q \not \equiv 1 \bmod p$, such a Sylow subgroup must be invariant. Similarly, a Sylow subgroup of order q must be invariant. Therefore, by Theorem 8.2, G is the product of these subgroups and since their common part (by an obvious consideration of periods) is the neutral element, by Corollary $8.1, G$ is the direct product of these two cyclic subgroups of distinct prime orders, and so G is cyclic and also abelian.

Problem 10.4. Find all Sylow subgroups of S_{3} and verify Theorem 10.2.

Problem 10.5. Prove that no group of order 56 is simple.
Problem 10.6. Prove that G is abelian if G is a group of order $p^{2} q$, where p and q are positive primes such that $q<p$ and $q \backslash p^{2}-1$.

Problem 107 Prove thit ffevery Sylow subgroutp of a group G is invariant, then G is the drect product of its Sylow subgroups

I! PERMUTATIONS AND PERNUTATION GROUPS

Derinition 11 : A I-I mapping of a set E onto atself is called a permitation of E The set of all permutations of E is called the symmetric group of the set E and is denoted by S_{F} If E is a finte set of n objects S_{z} it is ofien cilled the simmetric group of degree n and is denoted by S_{n} In this case each element is sald to be of des ree n

Problfm 111 Find $S_{\text {s }}$

Probleat 112 Show that S_{n} is of order n^{1}
Derinition 112 A t-1 mapping α of a group $\langle G \square\rangle$ onto
 $(a \square b) \alpha-(b a) O(a c)$ If $G-H$ the mapping is crled an anta aitomorphisin

Defintion 113 Let E be a set which is closed uith respect to an internal law of composition - A rugh (lefi) translation of E $\delta_{n}\left(\gamma_{n}\right)$ determined by a $\in L$ is the mippang of E into itself defined by $x \delta_{a}=x \square a\left(\gamma_{n}=a \square x\right) \forall r \in E$

Thioreat 11 ! The set $T_{n}\left(T_{1}\right)$ of all tight (left) translations of a group G forms a subgroup of S, and $T_{n}\left(T_{d}\right)$ is isomorphic (antl isomorphic) to G
 bec use G is a group $x-v$
δ_{a} is an onto mapping since if $u \in G$ Ұレ $\in G \ni>\square a=и$ Thus $\delta_{s}-n$
T_{k} is closed since $x\left(\delta_{a} \delta_{b}\right)=\left(x \delta_{g}\right) \delta_{a}=(x \square a) \delta_{b}-(x \square a)$ $\square b-x \square(a \square b)=\delta_{n \square b}$

The denny mapping is δ_{e} where e is the neutral element of G, and obviously δ_{e} is the neatral element of T_{k}

Each δ_{n} has an muerse δ_{a} : since $\left\{x \delta_{n}\right\} \delta_{a}{ }^{1}-(x \square n) \delta_{a}$: $=(x \square a) \square a^{1} \approx x \square\left(a \square a^{1}\right)=x \square e=x \delta_{e} \Rightarrow \delta_{e} \delta_{n}-1=\delta_{e}$ Sum lariy $\delta_{\mathrm{a}}-1 \delta_{\mathrm{a}}=\delta_{\mathrm{c}}$ Therefore since the assoctative law obviously holds in $G T_{R}$ is a subgroup of S_{ℓ} Simalarly T_{L} is a subgroup of S_{G}

Next we prove that the mupping $a \rightarrow \delta_{a} \forall a \in G$ is an isomos phism of G onto T_{R} Thet it is ad $\mathrm{I}-1$ onto mapping is obvious That $a \square b \rightarrow \delta_{u} \delta_{b}$ follows from the thard sentence of the proof Therefore it is an isomorphism

We leave the proof that $a \rightarrow \gamma_{a}$ is an anti-isomorphism of G onto T_{1} to the reader.

Corollary 11.1. (Cayley.) Every finite group G of order n is isomorphic to a permutation group of order n and degree n.

Corollary 11.2 Every group G is isomorphic to a group of left translations.

Problem 11.3. Complete the proof of Theorem 11.1.
Problem 11.4. Prove Corollary 11.2. (Hint: use the mapping $a \rightarrow \gamma_{a}-1$.)

Problem 11.5. Find T_{R} and T_{L} for S_{3}.
Problem 11.6. Find for S_{3} the group of Corollary 11.2.
Theorem 11.2. Every element of T_{R} is permutable with every element of T_{L}. Further, if β is a mapping of G into G, permutable with every $\gamma_{a}\left(\delta_{a}\right)$, then $\beta \in T_{R}\left(T_{l}\right)$.

Proof: $\quad x\left(\gamma_{a} \delta_{b}\right)=\left(x \gamma_{a}\right) \delta_{b}=(a \square x) \delta_{b}=(a \square \lambda) \square b=a \square$ $(\lambda \square b)=a \square\left(\lambda \delta_{b}\right)=\left(x \delta_{b}\right) \gamma_{a}=x\left(\delta_{b} \gamma_{a}\right), \forall x \in G$. Therefore, $\gamma_{a} \delta_{b}$ $=\delta_{b} \gamma_{a}$.

Let β be any mapping of G into $G \ni \beta \gamma_{x}=\gamma_{x} \beta, \forall x \in G$; then $\lambda \beta=(. \square e) \beta=\left(e \gamma_{x}\right) \beta=e\left(\gamma_{x} \beta\right)=e\left(\beta \gamma_{x}\right)=(e \beta) \gamma_{x}=\lambda \square(e \beta)=$ $\therefore \square b$ where $b=c \beta$. Therefore, $\beta=\delta_{b}$. We leave the other case to the reader.

Problem 11.7. Finish the proof of Theorem 11.2.
Definition 11.4. A permutation P on the n objects a_{1}, a_{2}, \ldots, a_{n} is a cycle (also called a cyclic permutation or a circular permutation) if and only if there exists a subset $a_{2_{1},}, a_{1_{2}}, \ldots, a_{l_{h}}$ of the a 's such that under $P, a_{1_{j}} \rightarrow a_{1_{j+1}}$ for $j=1,2, \ldots, h-1, a_{l_{h}} \rightarrow a_{2_{1}}$, while $a_{1 c} \rightarrow a_{w c}$ for $w \neq i_{j}, j=1,2, \ldots, h$.

Two or more cycles are disjoint if and only if the subsets involved are disjoint.

Theorem 11.3. A cycle, $P \in S_{n}$, which leaves $n-h$ of the $a_{1}, a_{2}, \ldots, a_{n}$ unchanged is of period k.

Proor: If $j>0$, then under $P^{\jmath}, a_{i_{p}} \rightarrow a_{i_{q}}$, where $q \equiv p+j$ $\bmod h$ and $1 \leqslant q \leqslant j$. If $P^{j}=e$, then $p=q, \forall p$, and so the smallest j for which this is true is $j=h$. Therefore, P is of period h.

Theorem 11.4. A permutation $P \neq 1, P \in S_{n}$, can be expressed as a product of disjoint cycles uniquely except for the order of the factors.

Problemill 8 Prove Theorem 114
Problem II9 Express $\binom{a_{1} a_{2} a_{1} a_{1} a_{5} a_{8}}{a_{2} a_{4} a_{5} a_{1} a_{6} a_{4}}$ in the form of Theorem 114

Problem $1110 \quad$ Do the same as Problem 119 for $\binom{a b c d e}{d b c a c}$
Problear 11 it Prove that the pertod of a permutation is the Iem of the periods of the disjoint cyeles of which it is the product

A matter of hotation Since th a eyclic permutation all objects not in the subset given in Defimions 114 are mapped each onto itself they may be omitted and the eyclic permutation of Defintion 114 may be written as $\left(\begin{array}{ll}a & a, \\ a_{k} a_{k} & a^{k}\end{array}\right)$ and repetion of symbols may be avoided by writug this on one line as (atazan a_{4}) with the under stindings thet
(1) ench clement exces the lust is mapped ano she one wheb sueceeds it
(2) the Inst element is mapped onto the first fof course any ele ment not listed is mapped onto aself) if it be desired to indeate all the n objeets involved this last miy be written as ($a \quad a_{k}$) (n_{n+1})
$\left(a_{i n}\right)$ where each of the $a, s>A$ is mapped onto itself
Also we miy omit the letter a and wate the permut ition merely in terms of the subseripts thus $\left(a a_{,}, a_{k}\right)-\left(\begin{array}{lll}1 & i_{k}\end{array}\right)$

Problem 1112 Write as 1 produet of disjount cycles in single line form $\binom{123456789}{312465987}$

Problen II 13 Repeat Problem |l 12 for (123)(256)(789) (78)(12)

Definition 115 A eycle of degree a in which ench of exactly $n-2$ objects is mapped onto itself is called a transposition

Theorem 115 A permotation ean be expressed as a product of transpositions and for a given permutation the number of transposi tions in such a product is exther always even or always odd

Proof By Theorem 114 we can prove the first statement by $\left(\begin{array}{ll}\text { proving } & \text { it for a cycle Now }\left(a_{1} a_{2} \quad a_{k}\right)-\left(a a_{3}\right)\left(a a_{3}\right)\end{array}\right.$

Now for the second statement Let $\boldsymbol{L}_{n}-\Pi_{1} \operatorname{kekn}\left(\begin{array}{ll}\boldsymbol{r} & \text { t) } L_{n} \text { is a }\end{array}\right.$
product of positive integers and so it is positive. Let us consider the effect upon L_{n} of the single transposition (k, m), where, for definiteness, we may suppose that $k<m$. The only factors of L_{n} which are changed in sign by (k, m) are the factors ($m-i$) where $i \geqslant k$ and $(j-k)$ where $j \leqslant m$. Of the first type, we have $(m-(m-1))$, $(m-(m-2)), \ldots,(m-k)$, of which there are $m-h$. Of the second type, different from the first, we have $((m-1)-h),((m-2)-k)$, $((k+1)-h)$, of which there are $m-k-1$. Therefore, there are $2 m-2 k-1$ factors which are changed in sign, whereas all others remain unchanged. Since $2 m-2 k-1$ is odd, (k, m) changes L_{n} into $-L_{n}$. Thus, a permutation which is a product of an even number of transpositions will leave L_{n} unchanged, while one which is a product of an odd number of transpositions will change L_{n} into $-L_{n}$. Clearly, a given permutation, however it may be expressed, will always have the same effect on L_{n}. Thus, if a permutation is expressed as a product of transpositions, the number of transpositions will always be even or else always odd.

Problem 11.14. Express the permutations of Problems 11.9, $11.10,11.12,11.13$ in the form of Theorem 11.5 each in at least two different ways.

Definition 11.6. An even (odd) permutation is one which can be expressed as a product of an even (odd) number of transpositions.

Theorem 11.6. The set of all even permutations in $S_{n}, n>1$, is an invariant subgroup of S_{n} of order $n!/ 2$; it is called the alternating group of degree n, A_{n}.

Proof: If $s, t \in A_{n}$, then each can be expressed as a product of an even number of transpositions and so their product is also so expıessible. Therefore, by condition (3) of Theorem 1.1, A_{n} is a subgioup of S_{n}.

To prove the invariance of A_{n}, let $s \in A_{n}$ and $\| \in S_{n}$. Then s can be expressed as a product of an even number of transpositions, while " and $\|^{-1}$ together require an even number of transpositions, whether $"$ be even or odd. Therefore, $\|^{-1}$ su is expressible as a product of an even number of transpositions and so $\left\|^{-1} s\right\| \in A_{n}$.

Now let $p_{1}, p_{2}, \ldots, p_{h}$ be the distinct permutations in A_{n} and let q be an odd permutation. Then $q p_{1}, q p_{2}, \ldots, q p_{k}$ are all odd and, since the cancellation law holds in a group, they are all different. Therefore, there are at least as many odd permutations in S_{n} as even ones. On the other hand. if $q_{1}, q_{2} \ldots, q_{m}$ are all the distinct odd permutations in S_{n}, then $q_{1} q_{1}, q_{1} q_{2} \ldots \ldots q_{1} q_{m}$ are all even and all distinct, and so
there are at least is many even permutations as odd Therefore the number is the sime and equals $n^{1 / 2}$

Problem il 19 Find $\boldsymbol{A}_{2} \boldsymbol{A}_{3}$
Problem 11 16 Find the compostion table for A (use smgle line notation)

Problem II 17 Find all the subgroups of A_{4} noting in par ucular the there is no subgroup of order 6 thus showing that the con verse of L'granges Theorem does not hold in general

Promlem $1118 \quad$ Find all invanczant subgroups of A_{4} noting in partucular that $H=\{1$ (12)(34) (13)(24) (14)(23)\} is invanant (cf Theorem II 7)

Problfa 1119 Prove that S_{n} is generated by the $n-1$ trans prosition: (12) (13)
(\ln) [lint $(j)=(1 f)(1)(J))]$
Probleai II 20 Geracrilize Problem 1119 to transpositions eash of which involves uny one purticul tr h for any $k \quad 1 \in k \leqslant n$

Probsta 1121 Prove that A_{n} is zenerated by the 3 cycles (193) (124) (12n) [HAnt $\left(1,10(1)-(10)=(12 j)(12 n)(12 j)^{2}\right]$

Problem 11 2" Generalize Problem 1121 to 3 cycles all of which involve nny 2 fixed objects

We shall conclude our consideration of permutations with a theorem which we shall find of the utmost importance in the Galos Theory of Equitions For that we require a lemm?

Leama Whenever an inv stant subgroup H of $A_{n} H>4$ has a 3 cycle then $H=A_{n}$

Proof Let (123) $\in H$ Then (127) $-(132)$ E H Since $\|$ is invanant σ (132) $\sigma \in f \quad \forall \sigma \in A_{n}$ Let $\sigma=(12)(3 k) h>3$ Then σ (132) $\sigma=(12 A) \in \| \quad \vee R>3$ Therefore by Problem II $21 A_{m}-H$ The detals of the case when some other 3 cycle is assumed to belong to H are lefi to the reader

Problems 1123 Cirry out the detauls mentioned th the above proof (Hint use Problem 1122)

TiEOREM $117 \quad n>4 \Rightarrow A_{n}$ is sumple
Proof Let $/ /$ be an invanant subgroup of A_{n} and let $H \neq\{e\}$ We must show that $H=A_{n}$

Let ρ be a permutation in $H, \rho \neq e$, which leaves fixed as many objects as possible. ρ cannot leave $n-2$ objects fixed, for then it would be an odd permutation and then $\rho \notin A_{n}$. Therefore, ρ must affect at least 3 objects and if we can show it affects exactly 3, the lemma will imply that $H=A_{n}$.

Suppose that ρ affects more than 3 objects. Then in the representation of Theorem 11.4, either (1) ρ has a cycle consisting of at least 3 objects, or (2) all the cycles are transpositions.

In the first case, we can take $\rho=(123 \ldots) \ldots$, and here ρ would affect at least 5 objects, say 12345 , since a 4 -cycle is an odd permutation and so cannot belong to A_{n}. In the second case, we can take $\rho=(12)(34) . .$.

Now we transform by $\sigma=(345)$ and get, of course, another element of H. In the first case, $\rho_{1}=\sigma^{-1} \rho \sigma=(124 \ldots$. . . . In the second case, $\rho_{1}=\sigma^{-1} \rho \sigma=$ (12) (45).

Thus in both cases, $\rho \neq \rho_{1}$, and so $\rho^{-1} \rho \neq e$. The permutation, $\rho^{-1} \rho_{1}$ leaves fixed all number >5, since for $k>5$, the effect of performing ρ is the same as performing ρ_{1}. But $\rho^{-1} \rho_{1}$ leaves fixed in both cases the number 1 , and in the second case the number 2 as well. Therefore, $\rho^{-1} \rho_{1}$ leaves fixed more objects than does ρ, and $\rho^{-1} \rho_{1} \in H$. Therefore, our supposition that ρ affected more than 3 objects has led to a contradiction and so it is false. Therefore, ρ is a 3-cycle and $H=A_{n}$.

Corollary 11.3. $n \neq 4 \Rightarrow A_{n}$ is simple.
Problem 11.24. Prove Corollary 11.3.

12. FINITE ABELIAN GROUPS

The problem of determıning the stıucture of finite abelian groups has been completely solved. We now consider it. We shall use addition as the law of composition in this section and so the neutral element of the group will be denoted by 0 .

THEOREM 12.1. If G is an abelian group of order $g=p_{1}{ }^{a_{1}} p_{2}{ }^{a_{2}}$ $\cdots p_{h}{ }^{n_{h}}$, where the p_{1} are distinct primes, then $G=P_{1} \oplus P_{2} \oplus \cdots$ $\oplus P_{h}$, where P_{1} is a subgroup in which all nonneutral elements have as periods, powers of $p_{t}, i=1,2, \ldots, h$ and the order of P_{t} is $p_{1}{ }^{a_{1}}$.

Proof: First, we shall prove that the set of all nonneutral clements having as periods, powers of p_{i}, and 0 form a subgroup of G. P_{i}. Let λ and y be two such elements: i.e., $p_{1}{ }^{n}{ }_{\lambda}=0, p_{1}^{m} y=0$
(remember the p_{i}^{n} and p_{1}^{m} are additive exponents) Then if $q=\max$ $(m, n) p^{9}(x+u)=0$ Therefore by Theorem 1 I, these elements form a subgroup which we shall denote by P_{i}

We shall now apply Theorem 72 with the H, there our present P, Condition (1) is obviously satisfied sunce G is abelan and so is condition (3) using Lagrange s Theorem since the p_{1} are distinct We must stall prove that conchtion (2) holds For this let $z \in G$ and be of penod $p_{1}^{h} p_{2}^{\text {ta }} \quad p_{k}^{B_{h}}$ where of course some of the $b s$ may be zero It easily follaws by induction on the number of distinct pames actually present by Theorem 71 that ${ }_{\alpha}=x_{1}+x_{2}+\quad+x_{k}$ where x either is the neutral element of is an element of G of period p^{b} In either case by the first part of the proof $x \in P$ and so by Theorem $72 G=P_{1} \oplus P_{1} \oplus \oplus P_{2}$

Proalcar 121 Express the cyclic group of order 24 in the form given by Theorem 121 also the cyclic group of order 30

Defintiton 121 A finute 3 belan group G has a basis \leftrightarrow 日 n $a_{2} \quad a_{n} \in G \ni \forall x \in G \exists x \quad x_{2} \quad x_{n} \in Z 0 \leq r<p e r r a d$ of $a \quad \exists x=x_{1} a_{8}+x_{2} a_{7}+\quad+x_{n} t_{n}$ and this representation is unique The set $a \quad a_{2} \quad a_{n}$ is called t basts of G

Theorem 122 A finte abelian group G has a basis if and only if C is the direct sum of cyclic groups

Problem 122 Prove Theorem 1) 1
Problea 123 Find bases for the abeli in groups of Problem 121

Thlorem 123 A finite abelian group G is the direct sum of cycle groups

Proor Since by Theorem 121 every firute abelan group is the direct sum of subgroups of prime power order of we can prove the present theorem for abelian groups of order $p^{\text {n }}$ we have the theorem established for all finte abchan groups

So let G be of order $p^{\text {a }}$ where p is a prome I et p be the penod of an element of greatest period in G We shall prove the theorem by induction on β

First let $\beta-1$ ie the pernod of every nonneutral element of G is p Let a_{1} be iny element $\in G \quad a \neq 0$ In case the cyclic group generated by a_{E} is G we are through If not let $\boldsymbol{r}_{2} \in G$ and be such that a_{2} is not in the cyclic group generated by a_{1} Then the set of ele ments $x a_{1}+y A_{2} v-01 \quad p-1>-01 \quad p-1$ are all dss
tinct, since if two such were equal, say $\lambda a_{1}+y a_{2}=u a_{1}+v a_{2}$, then $(a-u) a_{1}=(v-y) a_{2}$, and so, since p is a prime, we should have a_{2} in the subgroup generated by a_{1} unless $x=u, y=v$. If we have now exhausted G, then G is the direct sum of the cyclic subgroups generated by a_{1} and a_{2}. If not, the process continues. It must terminate, since G is of finite order, and when it does, we have G expressed as the direct sum of a finite number of cyclic groups of order p.

Now, suppose the theorem true for all abelian groups in which the element of highest period is p^{γ}, where $\gamma<\beta$, and let G be an abelian group in which the highest period of an element is p^{β}. Then let H be the set of all element $p a$, where $a \in G$. Then H is a subgroup of G since if $c=p a, d=p b, c+d=p(a+b)$. Now the highest peiiod of an element of H is $p^{\beta-1}$, and so by the induction hypothesis and Theorem $12.2, H$ has a basıs $a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{r}{ }^{\prime}$ whose elements have periods $n_{1}{ }^{\prime}, n_{2}{ }^{\prime}, \ldots, n_{r}{ }^{\prime}$, respectively, which are, of course, powers of p. Since every element of H is of the form $p a, \exists a_{1} \in G \ni$ $a_{1}{ }^{\prime}=p a_{1}, t=1,2, \ldots, t$ and the period of a_{1} is $p n_{2}{ }^{\prime}=n_{l}$.

We shall now use the a_{1} just obtained to get a basis of G. The $u_{1} n_{2} \cdots n_{\text {, }}$, elements of $G, \lambda_{1} a_{1}+x_{2} a_{2}+\cdots+x_{r} a_{r}, \lambda_{1}=0,1, \ldots, n_{1}$ -1 , are all dıstınct, for if two such were equal, say $x_{1} a_{1}+\cdots+x_{r} a_{r}$ $=y_{1} a_{1}+\cdots+y_{r} a_{r}$, then we should have $\left(x_{1}-y_{1}\right) a_{1}+\cdots+$ $\left(1,-y_{1}\right) a_{r}=0$ and not all $x_{1}-y_{1}$ zero. Now, not all the $x_{2}-y_{1}$ are divisible by p, since if they were, we could factor it out and include it with each a_{1} getting $\left(l_{1}-y_{1}\right) a_{1}{ }^{\prime}+\cdots+\left(\lambda_{1}-y_{r}\right) a_{r}{ }^{\prime}=0$, impossible since the a_{1}^{\prime} form a basis of H. So upon multiplying by p [by the last remark for some $\left.i, n_{1} \ p_{1}\left(x_{1}-y_{1}\right)\right]$, and we get the last equation anyway, which is impossible. Therefore, the elements are distinct.

Thus the a_{1}, \ldots, a_{r} generate an abelian group K of order $n_{1} n_{2}$ $\cdots \cdot u_{r}$, which is a subgroup of G. If K is a proper subgroup of G, there exists an element $b \in G \ni b \notin K$. By hypothesis, $p b=c \in H$ and so $-c \in H$. Therefore, $-c=w_{1} a_{1}^{\prime}+\cdots+w_{r} a_{r}^{\prime}=p\left(u_{1} a_{1}+\cdots\right.$ $+u_{r}\left(a_{r}\right)$ and so $-c=p d$, where $d=u_{1} a_{1}+\cdots+u_{r}\left(a_{r}\right.$. Consider $b+d$. Now $p(b+d)=p b+p d=c-c=0$, and so $b+d=a_{r+1}$ is of period p and is not in K. If we add a_{r+1} to the basis elements a_{1}, \ldots, a_{r} we obtain a subgroup of G which contains b. If this does not exhaust G, the process can be continued, and since G is of finite order, it must terminate after a finite number of steps. We then get a basis in which the first r elements have periods greater than p and the others all have period p.

Problem 12.4. Find all abelian groups of order (a) 32, (b) 81.

Corollary 121 A finite abehan group has a basis
Difinition 122 The penods of the basis elements of a set of basis clements whose penods are powers of primes of a finte abelan group G are called the mianames of G

We might say, mvarmins with respect to a priticular basis but by the next theorem this is unnecessary

Theorem 124 The invariants of a finte abelan group G are independent of the chorce of basts elements

Proor We nced only prove the theorem for groups whose orders are powers of a prome p

I et $a_{1} \quad a_{1}$ and $b_{1} \quad b_{2}$, be two biscs w th periods m_{1} inf and $H_{1} \quad n_{3}$ respectively W_{e} may suppose them to be numbered so the $n_{1} \Rightarrow 1 n_{2} \geqslant \geqslant n_{5}$ and $n_{1} \geqslant n_{2} \geqslant \geqslant n_{s}$ All these num bers qre of course powers of the pnme ρ Now let m_{k} be the first m_{1} which is not equal to n For definteness suppose that $n_{k}>m_{h}$ The m_{n} th multuples of all the elements of G form a subgroup H which has as a basis the $m_{h} t h$ multiples of the elements of any the elements of any basis of G This subgroup is of course independent of the choice of basis By using the above buses of G we get the bases of H as $m_{k} a_{1} \quad m_{k} a_{2} \quad m_{k} a_{k}$, and $m_{k} b_{1} m_{k} b_{3} \quad n_{k} b_{e}$ ($>2 / h$ From the firat basis the order of H is

$$
\frac{I n_{1}}{n_{k}} \frac{I I}{n_{k}} \quad \frac{I I_{k} 1}{n_{k}}
$$

and from the second basis we can conclude that the order is

$$
\frac{A_{1}}{m_{k}} \quad \frac{n_{2}}{m_{k}} \quad \frac{n_{k}}{m_{k}}
$$

But this last number is greater than the first We have a contradiction and so no such m_{A} entsts

Theorem 125 Two abela in groups with the same invanants are isomorphic

Theorem 126 For each set of powers of primes $n_{1} n_{2}$ a_{r} there exists an abelian group with these as invanants

Probleat 125 Prove the first statement in the proof of The orem 124

Problem 126 Prove Theorem 125

Problem 12.7. Describe all abelian groups of order 108 in terms of their invariants.

Problem 12.8. Prove that an abelian group is cyclic if and only if its invariants are relatively prime in pairs.

Problem 12.9. Find the group of automorphisms of the abelian group of order 9 and invariants 3,3; of order 27 and invariants 3,3,3.

13. AUTOMORPHISMS AND ENDOMORPHISMS OF THE FOUR-GROUP, D_{4}

Automorphnsms of D_{4}. We shall write D_{4} as an additive group, i.e., $D_{4}=\{0, a, b, a+b\}$, where $2 a=0,2 b=0$. Its automorphisms are (in each case $0 \leftrightarrow 0$, and is omitted from the listings)

1:	$a \leftrightarrow a$	$\alpha:$	$a \leftrightarrow a$	β :	$a \leftrightarrow b$
	$b \leftrightarrow b$		$b \leftrightarrow a+b$		$b \leftrightarrow a$
	$a+b \leftrightarrow a+b$	$a+b \leftrightarrow b$		$a+b \leftrightarrow a+b$	
γ :	$a \leftrightarrow b$	γ^{2} :	$a \leftrightarrow a+b$	$\delta:$	$a \leftrightarrow a+b$
	$b \leftrightarrow a+b$		$b \leftrightarrow a$		$b \leftrightarrow b$
	$a+b \leftrightarrow a$		$+b \leftrightarrow b$		$a+b \leftrightarrow a$

It is easy to establish that $\alpha^{2}=\beta^{2}=\delta^{2}=\gamma^{3}=\iota$.
Problem 13.1. Show that the above group of automorphisms is isomorphic to S_{3}.

Other endomorphisms of D_{4}. If a group G^{\prime} is homomorphic to a group, G, then there exists an invariant subgroup H of G which is mapped onto e^{\prime}, the neutral element of G^{\prime} and G / H is isomorphic to G^{\prime}. Conversely, if H is any invariant subgioup of G, then G is homomorphic to G / H. (For example, the canonical homomorphism provides one such homomoiphism between G and G / H, but there may be otheis.) Thus every homomorphic image of G can be obtained by consıdering G / H for every invariant subgroup H of G. Thus every endomorphism of G can be obtained by finding first all the homomorphic images of G, i.e., all quotient groups G / H, neגt by finding subgroups, if any, of G which are isomolphic to each G / H, and, lastly, for a particular subgroup and a particular quotient group, finding all isomorphisms between them. (This, of course, can be done by finding all automorphisms of the subgroup.)

There are five subgroups of D_{4} : (1) D_{4} itself, (2) $\{0\}$, (3) H_{1} $=\{0, a\}$. (4) $H_{2}=\{0, b\}$. (5) $H_{3}=\{0, a+b\}$. All are invariant.
(1) D_{4} / D_{4} is a cychic group of order 1 There exists exactly one such subgroup in D_{4} namely $\{0\}$ So we get one endomorphism

$$
a \rightarrow 0 b \rightarrow 0 a+b \rightarrow 0
$$

(2) $D_{4} /\{0]_{\text {is }}$ isomorphic to $D_{4} D_{4}$ has only one subgroup iso morphtic to D_{4} but this subgroup has six vutomorphusms So we get here the previously considered six automorphisms which of course are endomorphisms
(3) $D_{i} / / /$ is a cychic group of order $2 D_{i}$ has three subgroups which are cyclic groups of order 2 but exch one has only the identity iutomorphesm Thus we live the three following endomorphasms (the onls homamorphism of D_{4} onto D_{4} / I_{4} is the cenomeal homo morphism)

$$
\begin{array}{rrrr}
a \rightarrow 0 & \zeta & \begin{array}{rlr}
a \rightarrow 0 \\
b & \rightarrow b & \eta
\end{array} & a \rightarrow 0 \\
b \rightarrow a & b \rightarrow a+b \\
a+b \rightarrow a & & a+b \rightarrow b & a+b \rightarrow a+b
\end{array}
$$

(4) D_{1} / d this case is exicily line c sse (3) and we get the endo morphism

(5) D_{1} / H_{3} this case is iso the case (3) and we get the endo morphesms

$$
\begin{array}{rrrrr}
\mu & v & \begin{aligned}
& a \rightarrow b \\
& b \rightarrow b
\end{aligned} & \xi & a \rightarrow a+b \\
b \rightarrow a \\
b \rightarrow a & a+b+b \\
a+b & & a+b \rightarrow 0
\end{array}
$$

Thus there are sixteen endomorptusms of the 4 group of which six are automorphisms

Problem 132 For each of the above endomorphisms a find the smallest positive integer $n \exists \sigma^{n}-t$ if one exists

Problem 133 Find all endomorphisms of C the cyclic group of order 12 (Hini since C_{z} is cyche the imge of a generator determines the endomorphisms)

Problem 134 Find all endomerphasms of the abelan group G_{n} of order 8 with meananse 24

Theorem 131 The sel of all endomorphisms of a group C and the usual law of composition for mappongs form a subsemtgroup of the semigroup of all mappings of G into itself

Definition 13.1. If α and β are two endomorphisms of an additive abelian group G, then $\alpha+\beta$ is the mapping of G into itself determined by: $\forall x \in G, a(\alpha+\beta)=(\lambda \alpha)+(\Omega \beta)$.

Theorem 13.2. The set of all endomorphisms of an additive abelian group G and the addition of Defintion 13.1 form an additive abelian group.

Problem 13.5. Prove Theorem 13.1. (Remember that here G is not necessarily abelian.)

Рroblem 13.6. Prove Theorem 13.2.
Problem 13.7. Analyze and describe the additive group of the endomorphisms of D_{4}.

Problem 13.8. Show that the additive group of endomorphisms of the group of Problem 13.3 is cyclic. (Hint: find an endomorphism of additive period 12.)

Problem 13.9. Do as in Problem 13.7 for the group of Problem 13.4.

14. COMPOSITION SERIES

Derinition 14.1. H is a maximal invariant subgioup of a group, $G \Leftrightarrow$
(I) H is an invariant subgroup of G,
(2) $H \neq G$,
(3) K is an invariant subgroup of $G, K \neq H, K \supset H \Rightarrow K=G$.

Problem 14.1. Prove that G / H is simple if and only if H is a maximal invariant subgroup of $G, G \neq H$,

Problem 14.2. Find two distinct maximal invariant subgroups of the cyclic group of order 24: of D_{k} : of the cyclic group of order 60 .

Theorem 14.1. M, N are maximal invariant subgroups of a gloup $G, M \neq N, D=M \cap N \Rightarrow G / M$ is isomorphic to N / D and G/N is isomorphic to M/D.

Proof: By Theorem 8.2, $M \square N$ is a subgroup of G. If $x=m$ $\square n$ is any element of $M \square N$, then $\forall g \in G, g^{-1} \square(m \square n) \square g$ $=\left(g^{-1} \square m \square g\right) \square\left(g^{-1} \square n \square g\right)=m_{1} \square n_{1}$, where $m_{1} \in M$ and $n_{1} \in N$. since $M . N$ are invariant. Therefore, $M \square N$ is invariant and contains M and N. Hence, since $M . N$ each is maximal, $M \square N=G$.

Now the theorem follows from Theorem 4.4 by taking first $H=M . L=N$ and then tahing $H=N, L=M$.

Problem 143 Apply Theorem 14 is the groups of Problem 142

Definition 142 Let $\left\{I_{1}\right\}, t=0,1, \quad n+1$ be a finite sequence of subgroups of G, a group, with the following properties
(1) $H_{0}=G, H_{n+1}=\{e\}$, where ϵ is the neutral element of G,
(2) H_{n} is simple.
(3) H_{i+1} is a maximal invanant subgroup of $H_{1}, t=0,1, \quad, n$ Then and only then, the sequence $G, H_{t}, H_{2+} \quad, H_{n}, H_{n+1}$ is a composithon senes of the group G (also called a senes of composition) The quotient groups

$$
\frac{G}{H_{1}} \frac{H_{1}}{H_{2}} \quad \frac{H_{n-1}}{H_{n}} \frac{H_{n}}{2}
$$

are called a set of prome jactor groups of G and their orders, the fuctors of composition of G

Tizonem 142 A group of finte order has a composition senes

Problem 144 Prove Theorem 142
Problfat 145 Give composition senes for (a) D_{k} (b) $C_{\text {En }}$ (c) S_{3} (d) S_{+}(e) S_{3} (f) D_{4} Where possuble give at least two different series

Problem 146 Give an example of a group of infinte order which does not have a composition senes

Theorem 143 (Jordan-Holder) For any two composition senes of a finte grotp G the prime factor groups are isomorphe in some order and the factors of composition ate the same

Proof The theorem is obviously true for any simple group and so it is true for any group of prime order We shall proceed by induction on the number of prime factors in the order of G Since it is true if the order is prime we shill suppose it true for all groups whose orders have fewer than a prime factors (not necessanly distinct) Now let the order of G have n prime factors and let $G M_{1}, M_{2 r} \quad, M_{r}$. $\{e\}$ and $G, N_{1}, N_{2}, \quad N_{n v},\{e\}$ be two composition series of G

If $M_{1}=N_{1}$ the theorem then follows by induction hypothesis So let $M_{1} \neq N_{1}$ and let $M_{1} \cap N_{1}=D_{1}$

Then by Theorem $14 \mathrm{t}, G / M_{1}$ is isomorphic to N_{1} / D_{1}, and G / N_{1} is isomorphic to M_{1} / D_{1} By Problem $141 G / M_{1}$ and G / N_{1} are simple, and since N_{1} / D_{1} and M_{1} / D_{1} are isomorphic to them again by Problem
14.1, D_{1} is a maximal invariant subgroup of both M_{1} and N_{1}. Now let $D_{1}, D_{2}, \ldots, D_{t},\{e\}$ be a composition series for D_{1}. Then M_{1} has the two composition series $M_{1}, M_{2}, \ldots, M_{r},\{e\}$ and $M_{1}, D_{1}, \ldots, D_{t},\{e\}$, and by induction hypothesis, the corresponding prime factor groups are isomorphic in some order. Therefore,

$$
\frac{G}{M_{1}}, \frac{M_{1}}{M_{2}}, \ldots, \frac{M_{r}}{\{e\}} \text { and } \frac{G}{M_{1}}, \frac{M_{1}}{D_{1}}, \ldots, \frac{D_{t}}{\{e\}}
$$

ate somorphic in some order. Similarly,

$$
\frac{G}{N_{1}}, \frac{N_{1}}{N_{2}}, \ldots, \frac{N_{s}}{\{e\}} \text { and } \frac{G}{N_{1}}, \frac{N_{1}}{N_{2}}, \ldots, \frac{D_{t}}{\{e\}}
$$

are isomorphic in some order. Now since G / M_{1} is 1 somorphic to N_{1} / D_{1} and G / N_{1} is isomorphic to M_{1} / D_{1}, it is obvious that

$$
\frac{G}{M_{1}}, \frac{M_{1}}{D_{1}}, \ldots, \frac{D_{i}}{\{e\}} \text { and } \frac{G}{N_{1}}, \frac{N_{1}}{D_{1}}, \ldots, \frac{D_{i}}{\{e\}}
$$

are isomorphic in some order. Therefore, by transitivity of isomorphism,

$$
\frac{G}{M_{1}}, \frac{M_{1}}{M_{2}}, \ldots, \frac{M_{n}}{\{e\}} \text { and } \frac{G}{N_{1}}, \frac{N_{1}}{N_{2}}, \ldots, \frac{N_{s}}{\{e\}}
$$

are isomorphic in some order. Lastly, since isomorphic groups have the same order, the factors of composition must be the same.

Definition 14.3. A group G is solvable if and only if the prime factor groups of G are of prime order.

Theorem 14.4. A_{n} is solvable if $n=3,4 . A_{n}$ is not solvable if $n \geqslant 5$.

Problem 14.7. Prove Theorem 14.4. (Hint: use Theorem 11.7.)

Problem 14.8. Verify Theorem 14.3 for the groups of Problems 14.2 and 14.5.

Problem 14.9. Prove that a finite abelian group is solvable.
Problem 14.10. Prove that $D_{2 n}$ and $Q_{4 n}$ are solvable.

Chapter 4: Systems with more than one

Law of Composition

In the last chapter we considered primarily systems in which one law of composition was present These systems were groups and sems groups. In the first three chapters there bave been instances of systems in which more than one haw of composition was defined N, Z the set of endomorphisms of an additive abelaan group We now consider systematically such more complicated systems Always one law will be internal and of the other laws one or more may be internal or external (which we define presently) or we may have some internal and some external We shall however always have some relations between the laws One of the most important such relations is the distributive property given by Defination $\leqslant 3$ of Chapter i

The first such system we consuder is a ring and we also consider certain special kinds of nogs such as integral domina division rings and fields In this connection we develop the rutional numbers which historically were the prototype of the concept of field just as the in tegers Z were the prototype of the concept of the integral domann Then we add for the first lime an external law of composition to get groups wath operators Contunumg thus we get to R modules and spend considerable time on them and on a special case of them called vector spaces This is in partal prepariuion for the matertal of Chap ter 7

The most complicated sysiem we consider is that of an algebra and in connection wth it we brefly drop the dssociative law

1 RINGS. FIELDS INTEGRAL DOMAINS

Definition It A ring R is an additive abelian group and a second law of internal composition (which we shall write as muluph catron and almost always omst the dot of multplication) such that R and the second law form n semugroup and the nght and left distributive laws of multipication with respect to addition both hold (The second law of internal composition need not be distinct from the first)

As we did in the last chapter in considering additive abelian groups, we shall write the neutral element of addition as 0 , and call it zero, and the neutral element of multiplication, if there is one, as 1 and call it the identity element. Inverses with respect to addition and multiplication will be written, respectively, as $-a, a_{L}{ }^{-1}$ (left inverse), a_{R}^{-1} (right inverse), if, of course, these latter exist.

Occasionally, one finds in the definition of a ring, the condition that the ring must have at least two elements, or that the two laws of composition be distinct. (This, by Definition 3.2 of Chapter 1, implies the existence of at least two elements.)

Theorem 1.1. The following systems (with two internal laws of composition previously defined in each) are rings:
(1) the rational integers Z,
(2) the residue classes modulo m (an integer), Z_{m},
(3) the endomorphisms of an additive abelian group G.

Proof: The only conditions remaining to be proved are the distributive laws in (3). These we prove as follows: $\forall x \in G$, $\forall \alpha, \beta, \gamma$ endomorphisms of G, we have $x[(\alpha+\beta) \gamma]=[(x \alpha)+(\lambda \beta)]$ $\gamma=(x \alpha) \gamma+(. \alpha) \gamma=x(\alpha \gamma)+\lambda(\beta \gamma)=x(\alpha \beta+\alpha \gamma) \Rightarrow(\alpha+\beta) \gamma=\alpha \gamma$ $+\beta \gamma$. and $x[\gamma(\alpha+\beta)]=(x \gamma)(\alpha+\beta)=(x \gamma) \alpha+(x \gamma) \beta=x(\gamma \alpha)+$ $\lambda(\gamma \beta)=\lambda(\gamma \alpha+\gamma \beta) \Rightarrow \gamma(\alpha+\beta)=\gamma \alpha+\gamma \beta$.

In addition to those properties of elements of a ring, which hold because of the properties of elements of a group or semigroup, there are some very important properties which involve both addition and multiplication. Several of these are included in the following theorem.

Theorem 1.2. Let R be a ring. Then
(1) $\forall x \in R, 0 \cdot x=x \cdot 0=0$,
(2) $\forall x, y \in R,(-x) y=x(-y)=-(x y)$.
(3) $\vee_{x}, y \in R,(-x)(-y)=x y$,
(4) $\forall n \in Z^{*}, \forall x \in R,(-x)^{n}=r^{n}$ if n is even, $(-x)^{n}=-x^{n}$ if n is odd.

Proof: (1) $x=x+0, x^{2}=x(x+0)=x^{2}+x \cdot 0$, and so by the cancellation law of addition, $\lambda \cdot 0=0$. Similarly, $0 \cdot \lambda=0$.
(2) $(-x) y+x y=(-x+x) y=0 \cdot y=0 \Rightarrow(-x) y=-(x y)$; similarly, $x(-y)=-(x y)$.
(3) and (4) are easily proved from the above [induction is needed in (4)], and so are left to the reader.

Definition 1.2. If there exists a positive rational integer $m \ni m a=0$ (m here is, of course, an additive exponent), $\forall a \in R$, a
rang then the smallest such posutive integer m is called the characiertatic of the ring R if no such ponitive integer exists then R is sard to be of charactertsuc zero (sometimes of characteristic infinity) (The expression 'of finte characteristic" is sometmes used to mean that the rine is not of characteristic zero)

Proalym 1 I Prove the statement in parentheses immedately preceding the statement of Theorem I I

Probilat 12 Justify each step to the part of the proof given of Theorem I!

Promea is Dascribe the ning of endomorphisms of the addrtive 4 group the cycle group of order 12

Probtem : 4 Find the ning of endomorphisms of the additive cyelic geroup of order p where ρ is a prime Show that it is isomorphie to Z_{m} for some m

PaODETis : 5 Find the nig of endomorphims of the adtrive group of Z

Problent 16 Give a ring of each possible characteristic
Problem 17 Show that if for any additive abelan group the product of every pair of elements t defined as zero the resulting system is a ring (This is sometimes called a eeroring)

Dffinition $13 \quad a \neq 0$ a $\in R$ aring a is aleft (migh) dusor of zero \Leftrightarrow 寸 $b \in R \quad b \neq 0$ Э $a b=0(b a=0)$ is a repular element of aring $R \Leftrightarrow a \neq 0 \| \in R \quad a$ is not a divisor of zero

Sometimes divisors of zero as defined above ate called proper divisors of zero

Theorem 13 Let $a \in R$ a ring The cancellation laws of multiplication hold for $a \Leftrightarrow a$ is a regular clement

Problemi 18 Prove Theorem 13
Problem I 9 Prove that a unt (cf Defination 162 of Chapter 2) is regular

Problem I 10 Find two rings in which all nonzero elements are tegular

Prohlem 111 Find which of the rings so far considered con tan (d) adentity elements, (b) units (c) divisors of zero

Problem 1.12. Prove in a ring R of finite characteristic and with an identity element, that the additive period of the identity element is the characteristic of the ring.

Definition 1.4. $\quad S$ is a subring of a ring $R \Leftrightarrow$
(1) $S \subset R$,
(2) $\langle S,+\rangle$ is a subgroup of $\langle R,+\rangle$,
(3) $\langle S, \cdot\rangle$ is a subsemigroup of $\langle R, \cdot\rangle$.

Definition 1.5. Two elements of a ring R are permutable if and only if they are permutable under multiplication. A ring R is commutative if and only if multiplication in R is commutative.

Problem 1.13. Show that every ring except one particular ring (and all others isomorphic to it) has at least two subrings.

Problem 1.14. Prove that the set C of all elements of a ring R which are permutable with all elements of R is a subring of R.

There are certain kınds of rings in which the multiplicative semigroup has further properties. Some of these we define now.

Definition 1.6. An integral domain (also called a domain of integrity) is a commutative ring I with an identity element $\neq 0$, in which all nonzero elements are regular.

A divsion ring is a ring D in which the nonzero elements form a group. (This is sometimes called a field, or a sfield.)

A field is a commutative division ring. (When a division ring is called a field, this is called a commutative field.)

Problem 1.15. Prove that a field is an integral domain.
Problem 1.16. Prove that Z_{m} is a field if and only if m is a prime.

Problem 1.17. Find which rings considered so far are integral domains and which are fields.

Problem 1.18. Prove that a finite integral domain is a field.
Derinition 1.7. The ring product of two rings R and S is the set product $R \times S$ with addition defined as in the group product of the additive groups of the rings, and multiplication defined as in the semigroup product of the multiplicative semigroups of the rings.

Theorlm 1.4, The ring product of two rings is a ring.
Problem 1.19. Prove Theorem 1.4.

Prontra 120 Find at example of a ring product of two fields which is not a field (Hint look for divisors of zero) Then prove that the ring product of two fields is neter a field

Since we hnow from Theorem 128 of Chapter 2 that a commu tative semgroup in whtch the cancellation law holds for every element can be imbedded in a group, the question naturally arises as to whether an integral domatn can be imbedded in a field If we omit commuta Invity but heep all other properties the ring cannot necessarily be imbedded in a division ring [This was shown by A Maleev, Math Ann Vol CXII] p 686 (1936)] However for an mtegral domann, it is possible Furst of afl we make clear what is meant by having one ring imbedded in another For this we generaluze Definutions I I I and II 2 of Chapter 2 Presently we shall gave generalizations of these two definutions so at present we shall merely saly that two nngs, R and S, are isomorphic if and only if there exists a l-l mapping α of R onto 5 such th it a ts an isomorphism of the additive groups and in isomorphism of the muliuphisative semigroupa Then the ring R is imbedded in the ring T if and only of there exists a subring S of T and an isomorphesm α of R onto S In general of course there may be more than one such isomorphism between R and S This gives us an opportunity when present to select the one best suted to our pur poses Also there may be more th on one subung of 3 which is somorphic to R Agan we may be able to choose the one we want

Theorem ! \& Is an integral domain $\Rightarrow=1$ a field F in whech f is imbedded

Proof Much of the proof is sumular to the developments in Chapter 2 begunung with Theorem 127

Let / be $/$ with 0 removed and let $A=I \times I$ We define addition and multiplication in Λ as follows $\left(a_{1}, a_{*}\right)+\left(b_{1} b_{2}\right)=\left(a_{1} b_{2}+a_{2} b_{2}\right.$, $\left.a_{2} b_{2}\right) \quad\left(a_{1} a_{2}\right) \quad\left(b_{1} b_{z}\right)=\left(a_{1} b_{1} a_{2} b_{2}\right) \quad$ We leave to the reader the simple verification that K and each of these laws form a commutative semigroup and that multupheation is distnbutive with respect to add tion, as well as the venfication that the relation R, defined by (a_{1}, a_{0}) $R\left(b_{1}, b_{2}\right) \Leftrightarrow a_{1} b_{2}=a_{2} b_{1}$, is an equialence relation compatible with addition and muluplication as just defined in K Then by Theorem 12 I, and those following it in Chapter 2, we have K / R closed with respect to each of the mduced laws $\bar{\mp}^{-}$and ${ }^{-}$, that each of these laws is associative and commulative, and that ${ }^{-}$is distributive with respect $10 \mp$

Further, if we let $C_{t a}$ o, denote the equivalence class (with respeck
to R) containing (a, b), we have $\left.C_{(0,1)} \mp C_{\left(a_{1}, a_{2}\right)}=C_{(0,} a_{2}+1 \quad a_{1}, 1 \quad a_{2}\right)$ $=C_{\left(a_{1}, a_{2}\right)}=C_{\left(a, a_{2}\right)} \mp C_{(0,1)}$ so $C_{(0,1)}$ is a zero element: also $C_{(a, b)}$ $\mp C_{(-a, b)}=C_{\left(a b-a b, b^{2}\right)}=C_{(0,11}$. Thus K / R is a commutative ring. Further, $C_{(1, b)} \cdot C_{(1,1)}=C_{(a \cdot 1, b \cdot 1)}=C_{(a, b)}=C_{(1,1)} \cdot C_{(a, b)}$. So $C_{(1,1)}$ is an identity element. Now $C_{(a, b)} \neq 0 \Leftrightarrow a \neq 0$, and so if $C_{(a, b)} \neq 0$, then $C_{(a, b)}{ }^{-} C_{(b, a)}=C_{(0,1)}$, and since $C_{(b, a)} \in K / R$, each element of K / R which is not $C_{(0,1)}$ has an inverse. Therefore, K / R is a field.

Now it is immediate that the set of all $C_{(x .1)}, \forall x \in I$ is a subring of K / R. We shall show that the mapping α defined by $\lambda \alpha=C_{(x, 1)}$ is an isomorphism of I onto this subring. It is clearly an onto mapping. If $C_{(x, 1)}=C_{(y, 1)}$, then, by the definition of $R, x \cdot 1=1 \cdot y \Rightarrow x=y$ and so α is $1-1$. Now $(x+y) \alpha=C_{(x+y, 1)}=C_{(x, 1)} \mp C_{(y, 1)}=x \alpha \mp y \alpha$. Also $(\alpha y) \alpha=C_{(x y, 1)}=C_{(x, 1)} \cdot C_{(y, 1)}=(x \alpha) \cdot(y \alpha)$. Therefore, α is an isomorphism and so I is imbedded in the field $F=K / R$.

Theorem 1.6. Every field L containing the integral domain I as a subring contains the field F of Theorem 1.5.

Proof: For the proof of this theorem it is sufficient to show that every element of F is a quotient of two elements of l, since every field contaning I must contain all such quotients.

Now $C_{(a, b)}=C_{(a, 1)} \cdot C_{(1, b)}=C_{(a, 1)} \cdot C_{(b, 1)^{-1}}=C_{(a, 1)} / C_{(b, 1)}$, this form being permitted since multiplication is commutative.

Definition 1.8. The field $F=\left(I \times I^{\prime}\right) / R$ of Theorems 1.5 and 1.6 is called the field of quotients of the integral domain I. If $I=Z$, we shall denote the field of quotients by Q, call it the field of rational numbers, and call its elements, rational numbers.

Problem 1.21. Show that the field F of Theorems 1.5 and 1.6 is the smallest field containing I.

Problem 1.22. Show that any ring R can be imbedded in a ring with an identity element. [Hint: consider $Z \times R$, and define: (m, a) $+(n, b)=(m+n, a+b) \cdot(m, a) \cdot(n, b)=(m n, n a+m b+a b)$.

2. LAWS OF EXTERNAL COMPOSITION AND GROUPS WITH OPERATORS

Definition 2.1. A law of external composition between elements of a set Ω. frequently called the set of operators, and elements of a set S. is a mapping of a part A of $\Omega \times S$ into S. If $A=\Omega \times S$, then we say that the law is defined everywhere and S is closed with respect to (or under) the law.

Example 24 Let $\Omega=n$ and S be a semgroup Then the mapping ($n s$) $\rightarrow s^{\prime \prime}$ is an external liw of composition for $S(n \in N$ $s \in S$)

Fxample 22 Let $S=G$ group and Ω be any set of endo morphasms of G Then ($0 g$) $\rightarrow \mathrm{gOVO} \mathrm{\in} \mathrm{\Omega}$ is an external law for \boldsymbol{G}

Exampli 23 Let $S-\{a\}$ and Ω be ony sel whatsocver Then (ω a) $\rightarrow a / \omega \in \Omega$ is an external liw for S

In Defintion 21 and an Example 23 the sets S and Ω had no properties except those demanded by Defintion 21 In Examples 7 I and 22 the sets involved did have other properties namely laws of internal composition defined in them When we add conditions of this hind we get vartous types of algebrase systems The first such involues in mern il law in S but none in Ω

Definttion 22 A set G law of internal composition \square and a law of external composition Δ with set of operators if form a group \mathbf{w} ith operators (or an A group) \Leftrightarrow
(1) $G[\square$ form a group
(2) G is ctosed with respect to $\Delta \mathrm{Af}$
(3) $7 a b \in G \quad \vee 0 \in M(a \square b) \Delta O=(a \Delta 0) \square(b \Delta 0)$

For brevity we shall frequently refer to 1 group with operators by the single letter denoting the set in which the internal law is defined

Since the symbol for the extemal law Δ is placed between ele ments of sets theich are usually defferent no ambuguty can result from omiting Δ and merely writing the elements adjacent to each other We shall henceforth usually do this and then condition (3) of Defintion 22 in part becomes $(a \square b) O=(a O) \square(b O)$

When we refer to \boldsymbol{G} is the group \boldsymbol{G} without operators we shall mean the group determined in condition (1) of Defintion 22 When we refer to subgroups normal subgroups etc of a group with oper ators we mean that the sets in question are subgroups etc of the group without operators We now introduce further terminology for subsets peculiar to a group with operators

Definition 23 Let G be a group with operators M

An element $d E G$ is ontanamifor an operator $\mathrm{O} \in M \Leftrightarrow d \mathrm{O}=\mathrm{a}$
A subgroup H of G is a stable subgroup (also called admissible or an M group) $\Leftrightarrow \forall h \in H \forall O \in M \quad h O \in H$

An operator $\epsilon \in M$ is called a neural operator $\Leftrightarrow \forall a \in G$ at $-a$

From condition (3) of Definition 2.2 we see that every operator of a group with operators provides an endomorphism of G as a group without operators. Thus a group with operators may be regarded as a group and a set of endomorphisms of the group. For example, we may consider the 4 -group and the endomorphisms designated in the previous chapter by o, ζ, ϵ. This is a group with operators and one stable subgroup is H_{1}, as an inspection of the endomorphisms concerned immediately shows, while H_{2} and H_{3} are not stable subgroups.

Problem 2.1. Using the 4 -group as above and the endomorphisms, $o, \iota, \alpha, \epsilon, \zeta$, find the stable subgroups.

Problem 2.2. Do the same as in Problem 2.1 using all endomorphisms.

Problem 2.3. Find the stable subgroups of the additive cyclic group of order 12 and all its endomorphisms.

Problem 2.4. For the group with operators consisting of a group G and all its inner automorphisms, find all stable subgroups.

Problem 2.5. For a ring R show that the additive group of R and operators consisting of all elements of R with multiplication as defined in R as the external law between operators and elements of the additive group of R form a group with operators.

Problem 2.6. Let $R=Z$ in Problem 2.5, and find all stable subgroups; do the same with $R=Q$.

Problem 2.7. Let G be an abelian group and $M=Z$, and let the external law be $(n . g) \rightarrow g^{n}, \forall n \in Z, \forall g \in G$. Prove that the resulting system is a group with operators. Find some stable subgroups.

Problem 2.8. Let R be a commutative ring. Prove that the additive group of the ring product $R \times R$, with operators,$\in R$ and external law $r\left(r_{1}, r_{2}\right)=\left(r r_{1}, r r_{2}\right)$ is a group with operators. Find some stable subgroups.

Problem 2.9. For the system of Problem 2.8, let R be a field F. Find some stable subgroups H with the additional property that $\forall r \in F, r \neq 0, r H=H$.

Problem 2.10. Prove that Theorems 3.1 and 3.2 of Chapter 3 hold if, for "group" we substitute "group with operators" and for "subgroup," "stable subgroup."

3 AI GEBRAIC SY STEMS AND HOMOMORPHISMS

Since we have now consudered both internal and external liws of compostion dufined on a set and stnce we have considered sets on which two such liws are defined the reader can appreciate the desir abilty of some generil definutions pertuming to such sets ind laws So we now give these definitions

Drilinitiov 31 TCf 41 of Chapter 2) Let Δ be a law of external eompostion defined in 1 set 5 with operitors Ω and 7 be a subset of S Then the restriction of Δ to T is the law of external compostion defined in T by the restrection (ef Definition 34 of Chapter II to $\Omega \times T$ of the mupping determining Δ in T

Dritnitiov 32 (1) An alsebrate wsfom is 7 set S ind one or more fiws of metn il composmon defined in S ind no one or more laws of external composition defined between elements of a set or several sets of oper itors ind elements of S Further these laws may be subyected to fuldilmg cert un conduons ieg commut thenthy asse elativity eis) nad to satisfs cert in relittons between the laws (eg distributivity)
(') Two igebrite systems with the sime number of internal laws the same number of extern if laws with i 1 lm ipping of the laws of one systion onto the hws of the wher bywem vuch th th corresponding laws salisfy the same condinoms and the same rel tions tre sad to be of the same spertis
(3) Two taebrac aystems of the sume apecies are homolonoms if and only if the sets of oper itors for corresponding liws of the tho systerns tre the same
(4) An tigebrak system 7 is isbusten of an algebraic system S if and only if (d) $T \subset S$ (b) T is elosed with respect to ench how of composition (internal and externil) of S (c) each las of composition of T is obt inned is a restriction io T of a I iw of composition of S

Problem 3 : Certain subsets of the algebraic systems so far considered have been given specill names Determine which of these are subsystems in iccordanee with Defintion 3 ? (4)

Definition 3$\}$ Let $\left\{S_{\alpha}\right\} \boldsymbol{\alpha} \in$ be 1 collection of homo logous algebranc systems Then their product $\left[l_{n e}, S_{4}\right.$ is their set product (cf Defintton 42 of Chapter 1) with the following lows of composition
(1) for each $\mathrm{G} w$ of internal composstion \square^{a} a $\in 1 ;-1$ n we define \square by

$$
\left\{s_{\alpha}\right\}_{\alpha \in 1} \square_{1}\left\{t_{\alpha}\right\}_{\alpha \in \Lambda}=\left\{s_{\alpha} \square_{l}^{(\alpha)} t_{\alpha}\right\}
$$

(2) for each law of external composition, $\triangle_{1}^{(\alpha)}$, we define

$$
\Theta \triangle_{1}\left\{s_{\alpha}\right\}_{\alpha \in 1}=\left\{\Theta \triangle_{\imath}^{(\alpha)} S_{\alpha}\right\}_{\alpha \in 1}, i=1, \ldots, n, \alpha \in \Lambda .
$$

for each operator Θ.
Problem 3.2. Show that semigroup product, group product, and ring product are special cases of Definition 3.3.

Problem 3.3. Prove that the product of homologous algebraic systems is an algebraic system homologous to the given ones.

Definition 3.4. Let S and S^{\prime} be two homologous algebraic systems with laws $\square_{1}, \triangle_{l}$ and $\square_{1}^{\prime}, \triangle_{2}^{\prime}$, respectively. Then a mapping α of S into S^{\prime} is a homomorphism of S into $S^{\prime} \Leftrightarrow$
(1) $\left(s_{1} \square_{1} s_{2}\right) \alpha=\left(s_{1} \alpha\right) \square_{1}^{\prime}\left(s_{2} \alpha\right), \forall i$, and $\forall s_{1}, s_{2} \in S$
(2) $\left(\Theta \triangle_{1} s\right) \alpha=\Theta \triangle_{l}^{\prime}(s \alpha), \forall i, \forall s \in S$, and for each operator Θ.
α is a homomorphism of S onto S^{\prime} if and only if α is a homomorphism of S into S^{\prime} and α maps S onto S^{\prime}. Then we say that S^{\prime} is homomorphic to S.

If α is, further, $1-1, \alpha$ is an isomorphism of S onto S^{\prime}, and so we say that S and S^{\prime} are isomorphic.

If $S=S^{\prime}$, then if α is a homomorphism, we call it an endomorphism, and if α is an isomorphism, an amtomorphism.

An algebraic system S is imbedded in a homologous algebraic system $U \Leftrightarrow \exists$ a subsystem T of $U \in S$ and T are isomorphic.

The above definitions of course apply to groups with operators. It should be noted that, according to Definition 3.4, the endomorphisms of a group with operators are precisely those endomorphisms of the group without operators which are permutable with all the endomorphisms of the group without operators which are operators.

Problem 3.4. Find the endomorphisms of the group with operators of Problem 2.1.

Problem 3.5. Do the same as Problem 3.4, for the group of Problem 2.3.

Naturally all theorems about groups with operators hold for groups without operators, since M of Definition 2.2 may be empty.

On the other hand, many, but not all theorems about groups without operators generalize to groups with operators. One place where it is necessary to clarify such generalization is in connection with quo-
uent groups Let G be a group with oper tors M and H a stable in vanant subgroup of G We wish to have the quotient group $G / / /$ be a group with operators To do this we must define $A O$ for all $A \in G / H$ and for all $O \in M$ and the defintion of it must make it an element of G / H To define $A O$ as might be suggested by the obwious generaliza toon of Defintion 3 l of Chapter 3 (ie to define it as the set of all $a \mathrm{O}$ for all $a \in A$) is unstisfactory sinee even if $A=\|$ we may have $H O \neq H$ with that generalization (of course $H O \in H$ since H is stable) and so the compostte would not be an element of G/H To avord this difficulty we define $A \Theta$ to be the cosel $B \exists a \Theta \in B$ $\forall a \in A$ By conduton (3) of Defimion 22 and by Definition 34 this m ikes $G / / I$ a group with operators if

Problest 36 Fill in the detals of the proof of this last statement

Probleas 37 Tohe a stable subgroup of the group of Problem 2 I and describe the quotient group eorresponding to it

Problem 38 Generaltze Theorems $\begin{array}{lllllll}36 & 3 & 7 & 38 & 39 & 3 & 10\end{array}$ and 312 of Chipter 3 to groups with operators

4 MODULES

Now we eonsider groups with operators and start adding eonditions to the set of operitors and this will require some relations between the various laws of eomposition present

Defintion 41 Let R be a ring Then an additive abelian group E with operators R is a left R module \Rightarrow
(1) $\forall \alpha \in R \forall x \in E(\alpha+\beta) x-\alpha r+\beta r$
(2) $\alpha(\beta r)-(\alpha \beta) x$

If (2) is replaced by

$$
\text { (2) } \alpha(\beta x)-(\beta \alpha) x
$$

then E is a righit R atodule
An R module E (ether left or right) is untary if and only of R has an identity element ϵ wheh is a neural operator $1 \mathrm{e} \forall x \in E$ © $x=x$

If it is clear from the context whether E is a rught or a left R module or if it doesnt matter then the stmpler expression R module will be used This wall always be the case if R is commutative

It should be noted meonditon (I) of the above definution that
the + sign on the left denotes addition in R, while the + sign on the right denotes addition in E. Also, in condition (2) we have multiplication of elements of R and multiplication between an element of R and an element of E. No confusion should result from this. It should be noted that an R-module involves four laws of composition.

Problem 4.l. Prove that in an R-module E, (a) $\forall \alpha \in R$, $\alpha \cdot 0=0$, (b) $\forall x \in E, 0 \cdot x=0$, (c) $\forall \alpha \in R, \forall x \in E, \alpha(-x)=$ $(-\alpha) x=-(\alpha x)$. Interpret the zeros and the minus signs carefully.

We now define a particular R-module which is of fundamental importance.

Definition 4.2. If R is a ring, then $V_{n}{ }^{L}(r)$ is the additive group of the ring product of n factors, all equal to R, with operator product defined as $r\left(r_{1}, r_{2}, \ldots, r_{n}\right)=\left(r r_{1}, r_{2}, \ldots, r_{n}\right), \forall r \in R . V_{n}{ }^{R}(R)$ is the same except that $r\left(r_{1}, r_{2}, \ldots, r_{n}\right)=\left(r_{1} r, r_{2} r, \ldots, r_{n} r\right)$. In $x=$ $\left(r_{1}, r_{2}, \ldots, r_{n}\right), r_{1}$ is called the ith component of x. If R is commutative, or if from the context the meaning is clear, $V_{n}{ }^{I}(R)$ or $V_{n}{ }^{R}(R)$ will be denoted simply by $V_{n}(R)$.

Theorem 4.1. $\quad V_{n}{ }^{\prime}(R),\left(V_{n}{ }^{k}(R)\right)$ is a left (right) R-module. If R has an identity element, both $V_{n}^{\prime}(R)$ and $V_{n}^{R}(R)$ are unitary.

Definition 4.3. $\quad E$ is a vector space over the field $F \Leftrightarrow E$ is a unitary F-module where F is a field.

Definition 4.4. A submodule (vector subspace) of an R module (vector space E over F) is a subsystem of E [cf. Definition 3.2(4)] which is an R-module (vector space over F).

Problem 4.2. Prove Theorem 4.1.
Problem 4.3. Show that $V_{n}(Z)$ is a Z-module, which is a subset but not a submodule of $V_{n}(Q)$.

Problem 4.4. Show that if S is a subring of a ring R, then every submodule of an R-module is an S-module.

Problem 4.5. Show that in a unitary R-module E, the mapping $\forall x \in E, x \rightarrow a x$, where a is a unit of R, is an automorphism of the additive group (without operators) E.

Problem 4.6. Show that in a vector space E over F. the mapping, $\forall_{\lambda} \in E, \lambda \rightarrow \alpha r$ is an automorphism of the additive group (with operators) E, for every $\alpha \neq 0, \alpha \in F$.

Problfat 47 Prove that if $\boldsymbol{M} \boldsymbol{\Lambda}$ are two submodules of an R module E then $M+N$ and $M \cap N$ are submodules of E

Probleal 48 l'rove that every submodule of a vector space E is a subvector spree of E

The quotient module of in R module is i spectal case of the quotent group of 7 groutp with operitors

The modute product of R modules ts covered by Definution 33 and Problem 33 estrblishes that it is an R module If we have a collection of R modules $\{E\}: E \Omega$ then the module product in the c tse th it each E is the idditive group of R with R as the set of operators (cf Probicm 25) is denoted by $R_{t}{ }^{n}$ of $R_{k}{ }^{11}$ according is operator multuplic ttion is on the leff or raght if $\Omega=\left\{\begin{array}{ll}1, & n\end{array}\right\}$ then $R_{i}{ }^{\prime}\left(R_{k}{ }^{\prime}\right)$ is denoted more briefly by $R_{t}{ }^{*}\left(R_{R}\right)$ and coincides of course with $\left.V_{a}(R) \|_{n}^{\prime \prime}(R)\right)$

We now gener ilize Detinition 72 of Chipter 3 to R modulas
 E Then E is the dircit tam written $E-M_{1} \oplus \Delta t_{3}$ if and only of
(1) $H_{1} \cap H_{2}=\{0\}$
(2) every element of E Lan be expressed uniquely as $r+$; where $x \in M, \in M_{1}$

Further we siy that the submodules $H_{1} H_{2}$ of E are supple mentur $\Leftrightarrow E=M \oplus \mathrm{M}_{1}$

Problem 49 Prove that if E is a untity R module so is E / M where M is a submodule of E

Probleat 410 Prove that every module quotient of a vector space is a vector spice

Problem 411 Let M be those elements of $V_{2}(Z)$ of the form ($0 b$) $\forall b \in Z$ Show that M is a submodate of $V_{z}(Z)$ and that $V_{2}(Z) / M$ is isomorphic to Z

Problem 412 Let M be the set of those elements of $V_{1}(Z)$ of the form ($0 b c$) $\forall b \in \in Z$ ind let N be the set of those elements of $V_{9}(Z)$ of the form $(a 000) \vee a \in Z$ Show that M and N are sub modules of $V_{3}(Z)$ that $V_{s}(Z) / M$ is isomorphic to N and that $V_{3}(Z) / N$ ts isomorphic to M

Problem 413 Show that the submodutes of Problem 412 are supplementary

Problem 414 Show that in \boldsymbol{Z} considered as a \boldsymbol{Z} module the
submodule consisting of the even integers does not have a supplementary submodule.

Theorem 4.2. Let M_{1}, M_{2} be submodules of the R-module E. Then $E=M_{1} \oplus M_{2} \Rightarrow E$ is isomorphic to the module product of M_{1} and M_{2}.

ThEOREM 4.3. If $E=M_{1} \oplus M_{2}$, then the mapping, $\forall x \in M_{2}$, $x \rightarrow$ (the equivalence class of E with respect to M_{1} containing x) is an isomorphism between E / M_{1} and M_{2}.

Problem 4.15. Prove Theorem 4.2.
Problem 4.16. Prove Theorem 4.3.
Problem 4.17. Generalize Definition 4.3 and Theorem 4.2 to a direct sum of n modules. Prove the latter.

We conclude this paragraph by stating a theorem whose proof is immediate by induction and is left to the reader.

ThEOREM 4.4. Let $\left\{k_{h}\right\},\left\{y_{h}\right\}, h=1,2, \ldots, n$ be two finite sequences of elements of an R-module E. Then
(1) $\sum_{h=1}^{n}\left(x_{h}+y_{h}\right)=\sum_{h=1}^{n} x_{k}+\sum_{h=1}^{n} y_{h}$,
(2) $\alpha \sum_{h=1}^{n} x_{h}=\sum_{h=1}^{n} \alpha x_{h}, \forall \alpha \in R$.

5. LINEAR DEPENDENCE IN AN R-MODULE

Definition 5.1. Let E be an R-module. Then $x \in E$ is a linear combination with coefficients $\in R$ of elements of the set $A \subset E \Leftrightarrow \exists \lambda_{h} \in R, a_{h} \in A, h=1,2, \ldots, n, \exists x=\sum_{h=1}^{n} \lambda_{h} a_{h}$. The λ_{h} are called the coefficients. The element x is, under these circumstances, said to be linearly dependent over R, on $a_{1}, a_{2}, \ldots, a_{n}$.

Example 5.1. Let $E=V_{2}(Z), A=\{(3,4),(-3,7),(5,8)\}$. Then $(-3,-8)$ is a linear combination over Z of elements of A since $(-3,-8)=4(3,4)+(-3)(5,8)=4(3,4)+0(-3,7)+(-3)(5,8)$.

Example 5.2. Let $E=Z$, considered as a Z-module, $A=$ $\{8,12\}$. Then 4 is a linear combination over Z of elements of A since $4=(-4)(8)+(3)(12)$.

Problem 5.1. Describe the set of all linear combinations in Z of 3 : of 4,6 : of 4,5 .

Problem 5.2. Prove that the set of all linear combinations of (1.0) and (0,1) as elements of $V_{2}(R)$ is $V_{2}(R)$ for any ring R which
has an identuty clement
Problen 53 Prove that the set of all linear combinations of (13 4) and (4 5) is elements of $V_{2}(Q)$ is $\boldsymbol{l}_{1}(Q)$

Problem 54 Do Problem 53 in $V_{z}(7)$
Promlem 5 \& Prove that the set of all limear combinations of (2 4) and (4 乌) is elements of $V_{2}(Z)$ is $n H l_{2}(Z)$

Problen 56 Gencralize Problem $5 \boldsymbol{2}$ to $S_{n}(R)$ where R is a ning uth an identity element

Timorent 51 Let $A \subset C$ an R module the set M of all linear combmations with coefficents in R of elements of the set A is q submodule of E ie on R module I et S be a subring of R Then the set N of all lineqr combinotions with coefficterts in S of elements of A is in S module

Proof This theorem follows immetiately from Theorem 44

Coroltary 9 I As in Theorem 51 let L be my submodute of E contarning A Then $L כ M$

Definition «? \quad et $A C E$ in R module The submodnle of E senerated b, A is the smillest (cf Defintion 1^{\prime} of Chapter 3) submodule of E contaning A

Corollarys, If E is a unutary R module and $A C E$ then the submodule generated by A is the module M of Theorem 51 and each element is of the form $r a_{2}+\quad+r_{k} a_{k}$ where $r \in R$ and $u_{1} \in A 1-1$,

Corollary ${ }^{5} 3$ if E is not 1 unitity R module and $A \subset E$ then the submodule generated by A contans properly the module M of Theorem a 1 and e ach clement is of the form $a_{1}+\quad+r_{4} a_{s}$ $+n_{1} a_{1}+\quad+n_{m} a_{m}$ where $r \in \boldsymbol{R} \in A \in \in Z$

Problem 57 Describe the \mathbf{Z} module generated by the two elements of Problem 55 the Z module in Z generated by 5 by 1 by 3 and by 5

Problfm 58 if R is the ring of even integers describe the module generated by 4 by 8

Definition 53 The elements of a set A of an R module E are linearly independent wer $R \hookleftarrow\left(\mathbf{\Sigma}_{1}, \lambda_{1}, a_{1}-0 \lambda \in R a_{1} \in A \Rightarrow\right.$
$\lambda_{1}=0$ for $\left.i=1, \ldots, n\right)$. The set A is then called free. The elements $a_{1}, a_{2}, \ldots, a_{n} \in E$ are linearly dependent over $R \Leftrightarrow \exists \lambda_{1} \in R$, with some one or more $\lambda_{i} \neq 0 \ni \sum_{i=1}^{n} \lambda_{i} a_{2}=0$.

In a general R-module, there is an important distinction between Definitions 5.1 and 5.3 , for it is possible to have the elements of a set linearly dependent without having any one of the elements expressible as a linear combination of the others. For example, in Z considered as a Z-module, 2 and 5 are linearly dependent since (5) $2+(-2) \cdot 5$ $=0$, but there is no element $\lambda \in Z \ni 5=\lambda \cdot 2$, nor any $\mu \in Z \ni 2$ $=\mu \cdot 5$. However, the situation changes if the nonzero elements of R have inverses.

Theorem 5.2. Let E be a unitary D-module, where D is a division ring, and let $a_{1}, a_{2}, \ldots, a_{n}$ be a set of nonzero elements of E which are linearly dependent. Then \exists at least one $a_{k} \ni a_{h}$ is linearly dependent on the others.

Proof: By Definition 5.3, ヨ $\lambda_{1} \in D$, with some $\lambda_{h} \neq 0 \ni$ $\Sigma_{l=1}^{n} \lambda_{1} a_{2}=0$. Then $\lambda_{h} a_{h}=-\lambda_{1} a_{1}-\cdots-\lambda_{h-1} a_{h-1}-\lambda_{h+1} a_{h+1}-\cdots$ $-\lambda_{n} a_{n}$. Now since $\lambda_{k} \neq 0$, and D is a division ring, $\lambda_{h}{ }^{-1}$ exists and so $a_{h}=\mu_{1} a_{1}+\cdots+\mu_{k-1} a_{h-1}+\mu_{k+1} a_{h+1}+\cdots+\mu_{n} a_{n}$, where $\mu_{t}=-\lambda_{h}^{-1} \lambda_{1}$.

Corollary 5.4. Under the conditions of Theorem 5.2, at least two of the a_{1} are linearly dependent on the others.

Problem 5.9. Prove Corollary 5.4.
Problem 5.10. Prove that in any R-module if x is linearly dependent on a_{1}, \ldots, a_{n}, then the elements $\lambda, a_{1}, \ldots, a_{n}$ are linearly dependent, if R is not a zero-ring.

Problem 5.11. Determine which of the following sets of elements are linearly dependent:
(a) over Z, as elements of $V_{i}(Z)$; (i) $(1,3,4,7),(-2,-6,-8,-14)$:
(ii) $(4,-2,-6,-10),(-6,3,9,-15)$; (iii) $(1,3,4,7)$, $(4,-2,-6,10)(11,5,0,41)$.
(b) over Z_{6}, as elements of $V_{3}\left(Z_{6}\right)$; (i) $(1,2,4),(2,4,3)$; (ii) $(1,2$, 4), $(3,0,0)$: (iii) $(2,2,4)$.

Problem 5.12. Show that the following elements of $V_{4}(Z)$ are linearly independent: $(1,3.4,7),(-2,-6,-8,-13)$.

Problem 5.13. Show that in $V_{n}(R)$, where R is a ring with an identity element, the elements e_{1}, with the i th component 1 , and all other components zero, are linearly independent.

Derinition $54 \quad A$ baser of 1 unitary R module E is a free set of elements which genemte \boldsymbol{E} A untry \boldsymbol{R} module with o basis is called a free module

Problim 514 Show that the $\boldsymbol{c}_{\mathbf{4}}$ of Problem 513 form a basis of $\nu_{R}(R)$

Theoreal 53 Let R be a nag with in odentity element Then d unitury R module L has a finte basis $\Leftrightarrow E$ is isomorphic to some $I_{n}(R)$

Probify 515 Prove Theorem 53 (Hint by hypothesis E hus, fime basis soy $a_{i} \quad a_{e}$ By Problem 5 is $p_{i}=1$ "form i bissis of $I_{n}(R)$ Prove thot the megping $a_{i} \leftrightarrow c_{t}$ determines in Isomorphism belw een E and $S_{n}(R)$)

6 VECTOR SPACES

In this section we shill prove the important properties of linear dependence and independenee in a vector space At the end of the seetion are : number of exercises whish we easy to prove using the properties of hnear dependenceand which give imporiant properties of vector spaces

Theoren $61 \quad n_{1} \quad u_{n} \in E$ a vector space over F are linearly independent \Rightarrow each subset of $n_{t} \quad u_{n}$ is free

Proof Suprose " ${ }_{k}$ were Itnearly dependent Then 3 $\lambda_{u_{j}} \in F \ni \Sigma_{i}^{n} \quad \lambda_{k_{1}} n_{j}-0$ with not all $\lambda_{k}=0$ Then let $\mu_{k}-0$ for $j \neq 1 \quad i_{k} \mu_{f_{j}}-\lambda_{k}$ for $J=12 \quad \&$ Then $\Sigma^{n}=1 \mu_{s} \mu_{j}-0$ and not all $\mu, 0$

Theorem 62 If $t \in \boldsymbol{E}$ a vector spiee over \boldsymbol{F} is linearly dependent on " $\quad u_{k} \in E$ but not on $n_{k} \quad u_{k}$, then π_{k} is linearly dependent on $\pi_{1} \quad u_{k}$ i ind the subspace generated by " u_{k} is the same as the subspace generated by $u_{1} \quad u_{k}$;

Proof By hypothests we heve $\imath=\Sigma \Sigma_{=} \lambda \|$ with $\lambda_{k} \neq 0$ Then $u_{k}=\sum_{i=1}^{k}\left(-\lambda_{k} \quad \lambda_{i}\right) u_{i}+\lambda_{k}$, The result now follows from Theorem 51

Theorem 63 In E a vector space over F let $h_{1} \quad 1$, be linearly independent and let $i, \in \boldsymbol{M}$ the subspace generated by $u_{1} \quad u_{n}$ which are lanearly independent elements of E Then there exists a set ${ }^{\prime \prime}, H_{r z}$ obtaned from u_{1} $u_{\text {s }}$ sueh that the subspace generated by the set
μ_{n} by replacing $\boldsymbol{a}_{\text {, }}$ by \imath_{1} is M Thus $\& \leqslant n$

Proof: We proceed by induction. If $s=1$, the result follows from Theorem 6.2 by renumbering the u's if necessary.

Suppose that the theorem is true for $(s-1)$'s and consider $s v$'s. The system arising by replacing suitable u 's by v_{1}, \ldots, v_{s-1} generates the same subspace as that generated by the u 's and v_{s} belongs to it; i.e., v_{s} is linearly dependent on v_{1}, \ldots, v_{s-1} and certain u 's. In expressing that dependence the coefficient of at least one $\|$ must be $\neq 0$, since v_{1}, \ldots, v_{s} are linearly independent. Thus Theorem 6.2 applies again and we have the desired result. By the method used it is clear that $s \leqslant n$.

Theorem 6.4. If the vector space E over F has a finite basis containing n elements, then every basis of E has n elements.

Proof: Let $B=\left\{u_{1}, \ldots, u_{n}\right\}$ and $C=\left\{y_{1}, \ldots, y_{m}\right\}$ be two bases for E. Since the elements of C generate E and the elements of B are linearly independent, by Theorem $6.3, n \leqslant m$. Applying the same reasonıng with B and C interchanged we have $m \leqslant n$. Therefore, $m=n$.

This last theorem justifies the next definition.
Definition 6.1. If the vector space E over the field F has a finite basis, the number of elements in that basis is called the dimension of E over F, and is denoted by $\operatorname{dim} E$ (unless several fields are involved, then $\operatorname{dim}_{t} E$).

Problem 6.1. Prove that in a vector space E of dimension n, the elements of any set of $n+1$ elements of E are linearly dependent.

Problem 6.2. Find a basis for the vector subspace of $V_{4}(Q)$ generated by $(1,3,5,8),(2,3,7,-1),(8,15,31,13)$.

Problem 6.3. Prove that if a vector space E is of dimension n, then every subspace of E is of dimension $\leqslant n$. (Warning: do not attempt to apply Problem 6.1 immediately. Proceed step by step to find a basis. Then apply Problem 6.1.)

Problem 6.4. Prove that if M is a subspace of the vector space E, then $\operatorname{dim} E=\operatorname{dim} M \Leftrightarrow E=M$.

Problem 6.5. Prove that every set of n linearly independent elements of a vector space E of dimension n is a basis of E.

Problem 6.6. If M, N are subspaces of the vector space E $\ni E=M \oplus N$, prove $\operatorname{dim} E=\operatorname{dim} M+\operatorname{dim} N$. (Hint: take a basis of M and a basis of N and show that the union of these bases is a basis
of E.)

Problem 67 Prove that if two vector spaces of finte dimen sion are isomorphic, they bive the same dimension (cf Defintion 34)

Problem 6 B Prove that if two vector spaces over the same field have the same dimension, they are isomorphic

Problem 69 If $E=M+N, M, N$ subspaces of the vector space E, prove that $\operatorname{dim} E=\operatorname{dim} A+\operatorname{dim} N-\operatorname{dim}(M \cap N)$

Problem 610 Prove that if M is a subspace of E, then dim $E / M=\operatorname{dim} E-\operatorname{dim} M$

Problem 611 Prove that of \boldsymbol{M} is a subspace of the finte dimensional vector space E then 3 a subspace $N \ni E=W \oplus N$ (cf Problem 4 (4)

7 MODULES OF LINEAR COAIBINATIONS AND EINEAR RELATIONS

First we give a very general definition from the theory of sets
Drfinition 7 If A and B are any two sets then $A^{\prime \prime}$ is the set of all mappings of B into A

This is a specid case of Definition 4 I of Chapter 1 in which $I=B$ and $E_{t}=A \quad \forall_{t} \in I$

Problem 7 I Show that our notation $R^{3 n}$ used in Section 4 is agreement with this defirution

We are interested in the special case of Defimation 71 in whitin the set used as a base is a ning (What we do would apply to an additive group but that does not interest us here)

Definition 72 Let R be a ring and T any set Then $R^{\prime D}$ is the set of all mippings of T into R in which only a finte number of the umage elements for a given mapping are different from zero, and for which the following laws of composition hoid of a and b are any two such mappings we define therr sum $a+b$ by $t(a+b)=a+a b$, $\forall \downarrow \in T$ and define an external law between each element $r \in R$ and each mupping a as raby $t(r a)=r(a) \quad \forall_{t} \in T$ The mapping a is sometimes given by wning the set of images under n as $\left(a_{6}\right)_{+6} x$ and using this notation the two just defined laws of composition may be
 (2) $r\left(a_{\mathrm{i}}\right)_{\mathrm{t} \in \mathrm{T}}=\left(r a_{\mathrm{t}}\right)_{\mathrm{L} \in \mathrm{T}}$ and these give us $R_{\mathrm{L}}{ }^{(T)}$ For $R_{\mathrm{H}}{ }^{(T)}$, we use (1) and (2) $r\left(a_{4}\right)_{4 \in T}=\left(a_{1} r\right)_{i \in r}$ If R is commutative we write merely $R^{(T)}$

Theorem 7.1. If R has an identity element, then $R_{\mathrm{L}}{ }^{(T)}$ is a unitary left R-module and $R_{\mathrm{R}}{ }^{(T)}$ is a unitary right R-module.

Definition 7.3. Let R be a ring with an identity element, and let $e_{\lambda}=\left(a_{\ell}\right)_{t \in T}$ denote the element of $R^{(T)} \ni a_{\lambda}=1$ and $a_{\iota}=0$ for $\iota \neq \lambda$. The set of all $e_{\lambda}, \lambda \in T$, is called a canonical basis of $R^{(T)}$.

Theorem 7.2. The e_{λ}, as defined in Definition 7.3, form a basis of $R^{(T)}$.

Problem 7.2. Prove Theorem 7.1.
Problem 7.3. Prove Theorem 7.2.
Problem 7.4. Explain why in Definition 7.2 the restriction is made that only a finite number of the image elements should be not zero.

Problem 7.5. Relate $R^{(T)}$ with $V_{n}(R)$.
For any set, $T, t \rightarrow e_{t}, \forall t \in T$, is a 1-1 mapping of T onto the set of all e_{t}. Thus it is merely a change in notation to write t for e_{t} in expressıng elements of $R^{(T)}$. This justifies the following definition.

Definition 7.4. With e_{t} replaced by t in the expression of any element of the set, the unitary R-module $R^{(T)}$ is called the module of formal linear combinations with coefficients in R of elements of T.

Problem 7.6. Write in two ways the general expression for all elements of $Z^{(1)}$ where $L=\{a . f, g, \lambda\}$.

Problem 7.7. Do the same as in Problem 7.6 for $Z^{\left.(11 \times)^{n}\right)}$ where $M=\{1,2,3\}, N=\{1,2\}$.

Theorem 7.3. Let $\left(a_{2}\right)_{l \in T}$ be any nonempty set of elements of a unitary R-module E. The submodule generated by the a_{t} is isomolphic to $R_{\mathrm{t}}{ }^{(T)} / N$, where N is the submodule generated by all elements $\left(x_{\mathrm{t}}\right)_{\mathrm{l} \in \mathrm{T}} \in R_{\mathrm{I}}{ }^{(7)} \ni \Sigma x_{\mathrm{t}} a_{\mathrm{t}}=0$.

Problem 7.8. Prove Theorem 7.3. [Hint: consider the mapping $\left(x_{2}\right) \rightarrow \Sigma_{1} a_{1}$ and apply the generalization of Theorem 4.1 of Chapter 3.]

Definition 7.5. For brevity, the module N of Theorem 7.3 is called the module of linear relations between the a_{c}.

8. ALGEBRAS

We have thus far considered systems with one, two, and four laws of composition: now we consider one with three.

Drfinition 81 A ring inth opatifiors is a ring R. a set of elements (called operators) M, and a law of external composition between elements of if and elements of $R \ni$

(2) $\forall \alpha \in M, \forall \imath, v \in R a(x+v)=a r+a\}$.
(3) $\left.\cup_{e r} \in \| \forall x,\right\} \in R \quad \pi(n)=(\Omega r) 1=r(\alpha 1)$

As we have done with other systema, we shall usually denote a rong with operators by the letter desgenatung the set of elements

It should be noted that an operator of a rang with operators does nor provide in exdomorphism of the ring wathout sperators, alchough It does for the addituve group of the ring

One example of a ring with operators is any ning k with the operators the cemral of the tinge

Most examples of interest however are algebras which we next define

Defivition 8 I If R is a commulative nige with dit identity element then E is an alge bra out $R \Leftrightarrow E$ is a sing with operators R and E is a untary R modite with respect to the addition in E

Probiem 8 I Write out all the conditionv relating to the laws of composition in an algebrst

The system defined in Defintion 82 is vomentimes called a linear strsob ame thebra osir R in contrast to

Definition \& If at F sulishes th the conditions of an algebra except that muluplication in E is not associative for at le ist three elements of E then E is called a (linear) nomersuctato calechra (or not assoctative)

EXAxAPLE 8 (An example of an algebra) A basis of $V_{2}(Q)$ is $a=(10) b=(01) 1$ ea us define the product of these basis elements as follows $a=a \quad a b=b a=b b^{2}=a$ Then a and b and this multi phication form d cycice group of order 2 and so the assoctative haw holds for these two elements We shall prove below that if multuplica fion of basis elements in an R module s associative then multiplication of any three elements when defined as one would expect it to be is assoclative (If we had not been able to observe that a and b formed a group we could dways have venfied the assocrative law by considering the eight cases present 3 The elemens of thas algebra are all the ex pressions of the form ra+sbfor $r \in Q$ We rnight ask if there are divisors of zero present To find out let us take the product $\left(r_{1}, a+s_{1} b\right)$ $\left(r_{2} a+s_{s} b\right)=\left(r_{1} r_{2}+s_{1} s_{2}\right) a+\left(r_{1} s_{2}+r_{2} s_{1}\right) b$ and see when it is zero

It will be zero if $r_{1}= \pm s_{1}$ while $r_{2}=\mp s_{2}$. For example, $(a+b)$ $(a-b)=0$.

Problem 8.2. Consider the algebra derived from $V_{2}(Q)$ when multiplication of $a=(1,0), b=(0,1)$ is defined as: $a^{2}=a$, $a b=b a=b, b^{2}=-a$. Show that it is a field.

Problem 8.3. Construct a nonassociative algebra from $V_{2}(Q)$ by defining products of basis elements suitably.

There are two relatively easy ways (one of which we used above) by which we can construct algebras. One is to take a unitary R-module with a basis and define an associative multiplication for the basis elements. Then by Theorem 8.3 (below), the multiplication is associative for all elements when we define a product of $x=\Sigma_{t=1}^{n} \xi_{i} e_{1}$ and $y=\sum_{j=1}^{n} \eta_{j} e_{j}$ as $x y=\sum_{l=1}^{n}\left(\sum_{j=1}^{n} \xi_{i} \eta_{j} e_{2} e_{j}\right)$, where $\left\{e_{\imath}\right\}$ is the basis. A second way is to take a system such as a group or a semigroup, in which an associatıve multiplication is already defined and make it into an R-module by taking the set of all formal linear combinations with coefficients in a ring R of the elements of the system. Then, since products of basis elements are already defined, we have merely to define the product of two general elements as above and we have an algebra. In both cases, the distributive law is easy to verify.

Problem 8.4. Show that in the algebras constructed as above, the distributive laws hold.

Problem 8.5. Use the first method to construct an algebra over Z fiom $V_{2}(Z)$.

Problem 8.6. Use the second method with the cyclic group of order 3. Is it an integral domain?

Problem 8.7. Do the same as in Problem 8.5 except that in this case make the multiplication of basis elements nonassociative, if possible.

Theorem 8.1. In an additive abelian group G which is closed with respect to a multiplication (not necessarily associative) and which is distributive with respect to addition,

$$
\left(\sum_{i=1}^{n} r_{i}\right)\left(\sum_{j=1}^{n} s_{j}\right)=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} r_{1} s_{j}\right)=\sum_{j=1}^{n}\left(\sum_{i=1}^{n} r_{i}\right) s_{j}, \forall r_{i}, s_{j} \in G .
$$

Theorem 8.2. In a ring.

$$
\sum_{i=1}^{n} a_{1}\left(\sum_{j=1}^{n} b_{j} \sum_{h=1}^{n} c_{k}\right)=\sum_{h=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} a_{i}\left(b_{j} c_{h}\right), \text { etc. }
$$

Problem $88 \quad$ Venfy Theorems 81 and 82 for the case $\boldsymbol{n}=$?
Problem 89 Prove Theorems 81 and 82 by induction
Tileorfm 83 Let E be in R module with a basis $\{a\}$ and lel multiplication be defined so that E is closed with respect to that multi
 (αa_{n}) Then that muhaphication is assectative \Leftrightarrow the multupheation of basis elements is assoctaluve

Proor Let $\left.x=\sum_{i=1}^{n} \xi_{i} a_{i}\right\}=\sum_{j=1}^{n} \eta_{j} a_{j} \quad z=\sum_{i=1}^{*} \xi_{k} a_{k}$ be any three elements of E Then $x(\Sigma z)=\Sigma \xi_{a} a_{1}\left(\Sigma \eta_{r} \Pi_{j} \Sigma \zeta_{\alpha}\left(\sigma_{k}\right)-\Sigma \xi a\right.$
 ($a a_{j}$) a_{h} and from this the result the relition \approx follows immediately The relation \Rightarrow ts obvious

Corollary \& : The producis of the basis elements determine the algebra completely

Tiltorem $\%$ if S is an ddatuve sembroup then R can be made into an algebra by defining the producis of the basis elements as follows $c_{2} e-\epsilon_{*}$; if S has a neutral element 0 then the algebra derived from R has in identity element eo

Problem 810 Find in algebri by usang Theorem 84
Problem 811 Prove Theorem 84

9 QUATERNIONS

A very intecesting and important algebra over Q can be obtaned from $V_{4}(Q)$ For brevaty we introduce letters for the basts elements as follows $\left.<-\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right),-(0 \mid 000) ~ s=100 \mid 0\right) ~ L=(00$ 0 1) We define mutuptic tion of basts elements is follows $e^{2}-e$
 $-3 \mathrm{i}^{2}-j^{2}-h^{2}--1$

First we note that e is an adentity element and so an element of the form $q e$ where $q \in Q$ may be replaced by q Thus any element can be uniquely written wh the form $r_{0}+r_{1}+r_{2} l+r_{3} h$ where $r_{0} r_{1}$ $r_{2} r_{3} \in Q$

Next we observe thit the mapping of the basis elements and thear negatives onto the elements of the group $Q_{\sharp} \mid \leftrightarrow c a \leftrightarrow t b \leftrightarrow J$ $a b \leftrightarrow k b^{2} \leftrightarrow-6 b^{3} \leftrightarrow-J a b^{2} \leftrightarrow-1 a b^{2} \leftrightarrow-\lambda$ is an isomorphism and so the multiphation we have defined for the basis elements is associative

Problem 9.1. Verify that the above mapping is an isomorphism.
Definition 9.1. The algebra defined above is called the algebra of rational quaternions. The elements themselves are rational quaternions. If $\alpha=a+b i+c j+d h$ is an element of this algebra, $\bar{\alpha}=a-b i-c j-d h$ is called the conjugate of $\alpha . \alpha \bar{\alpha}=a^{2}+b^{2}+c^{2}$ $+d^{2}$ is called the norm of α and is denoted by $N(\alpha)$.

Problem 9.2. Verify the above product of α and $\bar{\alpha}$.
Problem 9.3. Prove that if $\alpha \neq 0, \exists \alpha^{-1}$, a quaternion, $\exists \alpha \alpha^{-1}$ $=\alpha^{-1} \alpha=1$. (Hint: generalize from the method used in dealing with complex numbers.)

Problem 9.4. Show by an example that an equation of the second degree with rational coefficients can have more than two distinct quaternions as solution. (In fact, infinitely many.)

Theorem 9.1. The algebra of rational quaternions is a noncommutative division ring.

Problem 9.5. Prove Theorem 9.1.

Chapter 5 Polynomials, Factorization, Ideals, and Extension of Fields

In this ch pipter we consider several dafferent but related topics First of all we discuss polynomals ind polynom il functions definang each carefully ind mihing a c ireful dstinction between them Then we conseder wome spectil types of meger dam uns and factorization in them These we did not convider e arleer since m iny of the best illus trat ons of them involve polynom ds

Nevt we conssder adeals which we for nmss io quite an extent Wh it inv iriant subgroups are for troups By using ide its in polynom al rings over fields we are able to get new fields with sertinn properties which we desire one of which is ihat in the new fieid a polynomad will fictor which would nol in the orignill field In order io do this we introduce cert un import int concepts about feids

Finilly we constder the extension of tsomorphisms between fields Thus is of ummed ate importunce in Chapter 6

1 POLYNOMIALS

The reader probibly has hid some previous experience with poly nomisls We now define them carefully

Let R be a ring whth an wemuty eiement and fet / be the ste of nonnegituve rational integers By Theorem 71 of Ch ipter $4 R_{L}{ }^{\prime}$ is a un tary left R module which we shall denote brefly by $R \quad$ The set of the $c_{1} \lambda \in I$ ds defined n Defin t on 73 of Chapter 4 form a busis of $R \quad$ Since $/$ is an idditive semigroup we can define an nssoctative multiplication of the e_{λ} by $e_{s} \quad e=c_{\boldsymbol{r}} \quad$ From this relation it follows immedintely by induct on that $e_{n}-c \quad \forall n \in Z^{*}$ if we denote c by
 sistung of $e_{0} x x^{*} \quad$ and furthermore $e_{3} x^{n}-x^{n} e_{0}=x^{n}$ Lastly since the set of alt elements $r e_{0} \forall r \in R$ is a ring isomorphic to R and since $r e_{0} x=r x$ we may replace $r e_{0} b_{b} y_{r} e_{0}$ by 1 the dentity element of R If we now cons der the module of all linear combinations
of e_{0}, λ, x^{2}, . . and define products as follows: if $u=\sum_{i=0}^{n} \xi_{2} x^{1}, v=$ $\sum_{j=0}^{n} \eta_{j} r^{\mu}$, then $l v=\Sigma_{i=0}^{n} \sum_{j=0}^{n} \xi_{i} \eta_{j} x^{i+\jmath}, \quad \alpha l l=\sum_{l=0}^{n}\left(\alpha \xi_{i}\right) \lambda^{2}, \quad \forall \alpha \in R$, and we have, by applying Theorem 8.3 of Chapter 4 , defined a ring which we shall denote by $R[x]$. (For x^{0}, see Definition 15.1 of Chapter 2.) If R is commutative, then $R[x]$ is an algebra over R.

Definition 1.1. The ring $R[x]$, is called the polynomial ring in x over R, and if R is commutative, the polyumial algebra in x over R. An element, $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=\sum_{l=0}^{n} a_{1} x^{t} \in$ $R[1]$ is called a polynomial in the indeterminate x, the a_{1} are called the coefficients of $f(\lambda), a_{2}$ is called the coeffictent of x^{1}; and if one or more of the a_{1} are $\neq 0$, then the smallest integer $l l$ satisfying $a_{1}=0$, $\forall i>n$, (such an integer exists by Definition 7.2 of Chapter 4) is called the degree of $f(x)$, (often denoted by $\operatorname{deg} f$), with a_{n} the leading coefficient. A polynomial whose leading coefficient is 1 is called monic. If all $a_{1}=0$, the polynomial is called the zero polynomial and does not have a degree.

It should be noted that the original ring R is imbedded in $R[x]$.
Sometimes it is convenient to use some letter other than x as the indeterminate. If we wish to define $R[y]$, for example, we need merely go back in the above discussion and call e_{1}, y.

Sometimes the degree of the zero polynomial is taken to be $-\infty$ with the understanding that $-\infty<a$ for each nonnegative a. This has some advantages, such as in Theorem 1.4 below it is unnecessary to give the alternatives $r_{1}(x)=0$ and $r_{2}(x)=0$, and also in Theorem 4.1 below, if we agree that $2^{-\infty}=0$, it is unnecessary to give the additional condition that $\delta(0)=0$.

Theorem 1.1. Let S be a subring of a ring R with an identity element. Then the set of all linear combinations of $1, x, x^{2}, \ldots$, with coefficlents in S is a subring of $R[x]$, and will be denoted by $S[\lambda]$.

Proof: Apply Theorem 5.1 of Chapter 4.

In the above theorem, the ring S need not have an identity. This enables us to consider polynomials over rings without identities since any ring S can be imbedded in a ring with an identity element. This was established in Problem 1.23 of Chapter 4 although late in this chapter we shall obtain a better result.

Problem 1.1. Using in turn each of the two forms for the basis elements, find the sum and product of the following polynomials, their degrees, and the degrees of the sum and product. as elements of $Z[.1]$:
$\{3,4-2,0,0, \quad),(12,3,0,0$,$) (* here means that all$ following coefficients are zero)

Probitm 12 Do the same as in Problem I I for the following elements of $Z_{5}[r]$ (a) ($1,3,5,0,0$,), (3, $-5,0,0$.) (b) $(4,3$ 0.0) (-2300)
 $\Rightarrow f(x) R(x)=\sum_{i=2}^{+m} c_{1} x^{x}$, where $c_{t}=a_{0} b_{s}+a_{1} b_{t-1}+\quad+a b_{0}$

Theoremil $3 f(x) g(x) \in R[r], f(x)+g(x)=h(x)$. $f(x) g(x)=h(x) \Rightarrow \operatorname{deg} h \leqslant \operatorname{deg} f+\operatorname{deg} g \operatorname{deg} h \leqslant \max (\operatorname{deg} f \cdot \operatorname{deg} g)$, if h and h have degres

Corollary II If R has nodivisors of zero then $\operatorname{deg} h=\operatorname{deg} f$ $+\operatorname{deg} s$

Coroliary 12 If R is an megral domin then $R[x]$ is an integral domain

Problem 13 Prove Theorem I 2 (by induction)
Problem 14 Prove Theorem 13
Problem I ${ }^{4}$ Give three examples in which the striel inequali thes hold in Theorem 13

Problem 16 Prove Corollaries 11 and I?
Probiem 17 Prove that the leading coefficient of $f(x)$ is regular $g(x) \neq 0 \Rightarrow \operatorname{deg} f(x) g(n)=\operatorname{deg} f(x)+\operatorname{deg} g(x)$

The reader should observe inumber of similantues between polynom d rings and Z The next cheorem is lihe Theorem 17 I of Chapter 2

Theorem 14 (Division Algorithm) Let R be a ting with an Identuty element and let $a(x) b(x) \in R[x]$ Further let deg $b(r)$ $=n \geqslant 0$ and tet b_{n} be a unt of R Then $\exists q_{1}(x) r_{1}(x) q_{i}(x) r_{2}(x)$ $\in R[x] \ni a(x)=b(r) a_{1}(x)+r_{1}(x) a(x)=q_{2}(x) b(r)+r_{2}(x)$ where $r_{1}(x)=0$ or $\operatorname{deg} r_{1}(x)<\operatorname{deg} b(x)$ and $r_{z}(x)=0$ or $\operatorname{deg} r_{2}(x)$ $<\operatorname{deg} b(x)$ Finally the $q_{i}(x)$ and $r_{i}(x),=12$ are unque

Proof We shall prove the exestence of $\boldsymbol{q}_{1}(x)$ and $r_{2}(x)$ and leave the rest to the reader

If $a(x)=0$ then the theorem holds with $\boldsymbol{q}_{2}(x)=r_{1}(x)=0$
The proof of the theorem is immedate if deg $a(x)<\operatorname{deg} b(x)$ for then we take $q(x)=0$ and $r(x)=a(x)$ So we shall suppose that $\operatorname{deg} a(x) \geqslant \operatorname{deg} b(x)$

If $a(x)=a_{0}$, then we can take $q_{1}(x)=b_{0}{ }^{-1} a_{0}, r_{1}(x)=0$.
Now let deg $a(x)=1$; then $a(x)=a_{1} x+a_{0}$ and $b(x)=b_{1} x+b_{0}$, since $\operatorname{deg} b(x)$ is 1 or 0 . If $b_{1}=0$, take $q_{1}(x)=b_{0}{ }^{-1} a(x), r_{1}(x)=0$; if $b_{1} \neq 0$, take $q_{1}(x)=b_{1}^{-1} a_{1} ; r_{1}(x)=a_{0}-b_{0} b_{1}^{-1}$. Thus the theorem holds if $\operatorname{deg} a(x)=1$.

Now suppose that the theorem holds for all $a(x)$ of degree $\leqslant n$, and let $a(x)=a_{n+1} x^{n+1}+a_{n} x^{n}+\cdots+a_{0}, \quad b(x)=b_{m} x^{\prime \prime}+\cdots+b_{0}$, where b_{m} has an inverse in R. We may suppose, by an earlier remark, that $m \leqslant n+1$. Consider $h(x)=a(x)-b(x) b_{m}^{-1} a_{n+1} x^{n+1-m}$. Then $h(x)$ is of degree n at most, and so by induction hypothesis $\exists \overline{q_{1}(x)}$ and $\overline{r_{1}(x)} \ni h(x)=b(x) \overline{q_{1}(x)}+\overline{r_{1}(x)}$, where $\overline{r_{1}(x)}=0$ or deg $\overline{r_{1}(x)}$ $<\operatorname{deg} b(x)$. Then $a(x)=b(x)\left[b_{m}^{-1} a_{n+1} x^{n+m}+\overline{q_{1}(x)}\right]+\overline{r_{1}(x)}=b(x)$ $q_{1}(x)+r_{1}(x)$, where $q_{1}(x)=b_{m}^{-1} a_{n+1} x^{-1+m}+\overline{q_{1}(x)}, r_{1}(x)=\overline{r_{1}(x)}$ and $r_{1}(x)=0$ or $\operatorname{deg} r_{1}(x)<\operatorname{deg} b(x)$.

Therefore, the theorem follows by induction. We leave the proof of the uniqueness as an exercise.

Corollary 1.3. If, in Theorem $1.4, R$ is a field, $q_{1}, q_{2}, r_{1}, r_{2}$ always exist if $b(\mathrm{x}) \neq 0$, and $q_{1}=q_{2}, r_{1}=r_{2}$.

Problem 1.8. Prove the uniqueness (use Problem 1.7).
Problem 1.9. Prove Theorem 1.4 for $q_{2}(x), r_{2}(x)$ including uniqueness.

Problem 1.10. Find $q(x), r(x)$ if $a(x)=x^{4}+2 x^{3}-3 x^{2}+5 x$ $+1, b(x)=x^{3}-2 x+2, R=Q$.

Problem 1.11. Do Problem 1.10 with $R=Z_{7}$.
Problem 1.12. Do Problem 1.10 with $R=Z_{6}$.
Problem 1.13. For $a(x)=x^{4}+(-3 i+2 k) x^{3}+(2+3 i) x^{2}+$ $(9-i+4 h) x+(6 i+3 h), b(x)=x^{2}-3 i x+(2-j)$, where the coefficients are rational quaternions, find $q_{1}(x), r_{1}(x)$ and $q_{2}(x), r_{2}(x)$.

Problem 1.14. Prove that Theorem 1.4 applies to $Z[x]$ with conclusion that $N a(x)=b(x) q(x)+r(x)$, where $N \in Z$. Can this be generalized to any arbitrary ring?

2. POLYNOMIALS AND POLYNOMIAL FUNCTIONS

It is important to realize that a polynomial and a polynomial function, which we are about to define, are quite different. This section is devoted principally to considering the relations between them.

Definition 2 I Let $f(x)=\Sigma_{l=1}^{n} a_{1} x^{1} \in R[x]$, and let $c \in R$ Frrst, $f_{R}(c)=\sum_{i=0}^{i} d_{1} c^{i}, f_{i}(c)=\Sigma_{l-m}^{k} c^{-1} a_{1}$ Sccondly, the mapping $c \rightarrow$ $f_{n}(c)\left(c \rightarrow f_{i}(c)\right)$ of R into R is called the rixht (leff) poly nomul func fron determined by the polynomial $f(x)$ If R is commutative, these two functions coincide and the mapping is called the polynomial function determined by $f(x)$ in this case since no confusion can result we usuntly denote the function by $f(x)$

The above is not completely standardized and some authors inter change the defintions of $f_{f}(c)$ and $f_{i}(c)$

Problem 21 Show that in general the above mapping $c \rightarrow f(c)$ is not i homomorphism of R

Problem 22 For $f(x)=r^{3}+(t-j) x^{2}+k x+21$ where the coefficients tre rational quaternoons find $f_{i}(f) f_{n}(J)$

Problem 23 For $f(x)=1+f r \quad g(x)=f-h x$ find $h(x)-$ $f(x) \quad$ f($x)$ Then show th it $f_{n}(J) \quad R_{R}(J) \neq h_{n}(j)$

The property drsplayed in Problem 23 that $f_{R}\{r) g_{g}(\alpha) \neq k_{R}(\alpha)$ when $h(r)=f(r) g(x)$ is illesitative of the difficulties which may arise If R is not commutalive However we ean establish one useful result in case $f_{i}(0)=0$ or $s_{n}(c)=0$ for this we need the following
[EMMA $f(r)=\sum_{i=0}^{n} a_{1} x^{\prime} \quad s(x)=\sum_{i=q}^{*} b_{1} x^{\prime} E R[x] \Rightarrow h(x)=$ $f(x) g(x)=\sum_{i=1}^{n} a_{i}\left(\sum_{j=0}^{n} b, x^{b}\right) x^{\prime}=\sum_{j=1}^{j} x^{d}\left(\sum_{i}^{n}, x^{i} u_{0} h_{j}\right.$

Thearem 21 Let R be a nigg with an identity element let $c \in R f(x) \quad f(x) \in R\{r\}$ and $\operatorname{let} g(x)-f(x) g(x)$ Then $g_{f}(d)=0$ $\Rightarrow h_{H_{n}}(\sigma)=0 \quad f_{i}(\alpha)=0 \Rightarrow h_{i}(c)=0$

Proof By the above Iemma $h_{k}(c)-\Sigma_{i}^{n} d_{d}\left(g_{N}(c)\right) c^{r}=0$ $h_{f}(c)-\sum_{j=0}^{n} c^{J} f_{f}(c) b_{j}=0$

Problem 24 Prove the lemma
Problem 25 Consider the statement of Theorem 21 for $g_{t}(c)=0$ and for $f_{R}(c)=0$

Problem 26 Prove that R is commutative $c \in R \quad h(x)=$ $f(x) g(x) \Rightarrow h(c)-f(c) g(c)$

Problem 27 Venfy Theorem 2 I for the palynomal funchons of Problem 23 using $c=1$

Theorem 22 (The Remainder Theorem) In applying The orem 14 to $a(x) \in R[x]$ and $b(x)=\mathbf{r}$ - where $\varepsilon \in R$ we have $r_{1}(x)=a_{1}(c)$ and $t_{2}(x)=a_{R}(c)$

Proof: Since deg $(x-c)=1$, we have $r_{1}(x)=0$ or deg $r_{2}(x)$ $=0$. Hence, $r_{i}(x) \in R$ for $i=1,2$. The rest follows by applying Theorem 2.1 with $g(x)=x-c$ and then with $f(x)=x-c$.

Problem 2.8. Apply Theorem 2.2 to the polynomial of Problem 2.2.

Definition 2.2. Let $f(x) \in R[x]$ and let S be a ring containing R as a subring. Then $c \in S$ is a right (left) zero of $f(x) \Leftrightarrow f_{R}(c)=0$ $\left(f_{l}(c)=0\right)$. If S is commutative, we say merely a zero of $f(x)$.

Theorem 2.3. Let $f(x) \in I[x]$, where I is an integral domain. Then $c \in I$ is a zero of $f(x) \Rightarrow x-c \mid f(x)$.

Definition 2.3. Let $f(x) \in I[x]$, where I is an integral domain. Then $a \in I$ is a zero of $f(x)$ of multiplicity (sometimes called order) $m \Leftrightarrow(x-a)^{m} \mid f(x)$ while $(x-a)^{m+1} y f(x)$.

Theorem 2.4. $f(x) \in I[x]$, where I is an integral domain \Rightarrow $f($.$) has at most n$ zeros if $\operatorname{deg} f(x)=n \geqslant 0$.

It is important to observe that two different polynomials may determine the same polynomial function. For example, let $f(x)=$ $x^{-1}+2 x^{2}+x$ and $g(x)=x^{7}+2 x^{6}+x^{5}$, considered as elements of $Z_{5}[\lambda]$. Then the two polynomials are, of course, different, while the functions determined by them are the same since $f(0)=0=g(0)$, $f(1)=4=g(1), f(2)=3=g(2), f(3)=3=g(3), f(4)=0=g(4)$. The next theorem gives a condition sufficient to insure that this cannot happen.

Theorem 2.5. If $f(x), g(x) \in I[x]$, where I is an integral domain with infinitely many elements, then if the polynomial functions determined by $f(x)$ and $g(x)$ are equal for all $x \in I$, the polynomials $f(.1)$ and $g(. x)$ are equal.

Corollary 2.1. Under the conditions of Theorem 2.5, if $f(x)$ and $g(x)$ are equal for $n+1$ elements where $\operatorname{deg} f \leqslant n, \operatorname{deg} g \leqslant n$, then $f=g$.

Problem 2.9. Prove Theorems 2.3, 2.4, 2.5 and Corollary 2.1.
Derinition 2.4. If $f(x)=\Sigma_{i=0}^{n} a_{1} x^{-1} \in R[x]$, then the derivative of $f(x)$ is $f^{\prime}(a)=\sum_{l=1}^{n} i a_{1} x^{-1}$.

THEOREM 2.6. $\quad f(x), g(x) \in R[x] \Rightarrow(f(x) g(x))^{\prime}=f(x) g^{\prime}(x)$ $+f^{\prime}(x) g(x) .(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x),(f(g(x)))^{\prime}=f^{\prime}(g(x))$ $g^{\prime}(x)$. and $\operatorname{deg} f^{\prime}(x)<\operatorname{deg} f(x)$, if $\operatorname{deg} f(x)>0$ and if $f^{\prime}(x)$ has a degree. [1f $f(x)$ is given as in Definition 2.4, $f(g(x))=\sum_{i=0}^{n} 儿_{i}(g(x))^{2}$.]

Problem 210 Prove Theorem 26 (use only Defirtion 2 4)
Problem 211 Find a field F and a poiynomal $f(x) \in F[x]$ $\ni \operatorname{deg} f^{\prime}(x)<[\operatorname{deg} f(x)-1]$

Theorem 27 Let $f(x) \in I[x] . c \in I$, an integral domain The element , is a zero of $f(x)$ of multophicity $m>1 \Rightarrow x-c \mid f(x)$

Proor Let c be a zero of order m Then by Defintion 23 and Defintion 161 of Chapter 2, $f(x)=(x-c)$ " $\phi(x)$, where $\phi(x) \in$ $[\mathrm{r}]$, and by Theorem 23 and Defintion 23, $\phi(\mathrm{c}) \neq 0$ Then by The orem 26 and Defintion 24, $f(\mathrm{x})=m(x-c)^{m-1} \phi(x)+(x-c)^{m}$ $\phi(x)=(r-c)^{m}\left[m \phi(x)+(x-c) \phi^{\prime}(r)\right]$, wheh, since $m>1, \Rightarrow$ $(x-c)^{m-1}|f(x) \Rightarrow(x-c)|(x)$

Corollary 22 If c is a zero of multiplicity m of $f(x)$, then c is a zero of muluplicity at least $m-1$ of $f(x)$

Proat em 212 Apply Theorem 26 to find the multiple zero of $f(x)=r^{3}-3 r^{2}+3 x-1$

Problem 313 Find an example of a polynomal such that the words at least in the above corollary are necessary (Hint use Problem 211)

3 GAUSSIAN SEMIGROUPS AND GAUSSIAN DOMAINS

We are now going to consider various factorization theorems first in a general semgroup customarily with multuplication as the law of composition as in Definituons 161 through 168 of Chapter 2 then in partucular for certain types of rings One exiremely important property possessed by many rings (Z is one such) is that of having a unique (or essentually unique) factorization for each nonzero nonumt element into a product of irreducible elements and intumately connected with this is the property of an arreducible element being a prime One simple example of a ning in which umque factorization does not hold is $R[x]$ where R is the division nng of rational quaternions here we have $r^{2}+1=(r-t)(x+t)=(r-f)(x+f)=(x-k)(x+k)$, and in each case the factors are obviously irreducible since they are of the first degree Of course, in this case the ring is not commutative How ever it is possible to give an example in a commutative ring in which factorization is not unique

Theorfm 31 If S is a commutative semugroup with a neutral element and in which the cancellation law holds for every element, then $p \in S, p$ is a prime $\Rightarrow p$ is irreducible

Proof: Let $p=a b, a, b \in S$. Then by Definition 16.6 of Chapter 2, since $a b=1 \cdot p$, either $p \mid a$ or $p \mid b$. Suppose for definiteness that $p \mid a$. Then $a=p c, c \in S$. So $p=p c b \Rightarrow 1=c b \Rightarrow c, b$ are units and so, since b is a unit (by Definition 16.5 of Chapter 2), p is irreducible.

In general, the converse of this theorem is not true. We have already given an example of a noncommutative ring in which the converse is not true, since $(x-i) \neq(x-j)$, etc.

Definition 3.1. A commutative multiplicative semigroup S with a neutral element and in which the cancellation law holds for each element is called Gaussian \Leftrightarrow every nonunit in S has an essentially unique factorization (cf. Definition 18.1 of Chapter 2) as a product of irreducible elements.

In a Gaussian semigroup the converse of Theorem 3.1 does hold.
Theorem 3.2. S is a Gaussian semigroup, $p \in S, p$ irreducible $\Rightarrow p$ is prime.

Proof: Let $p \mid a b$, where $a, b \in S$. Then $\exists c \in S \ni a b=p c$. Now $c=e_{c} \Pi p_{t}$, where e_{c} is a unit of S, and p_{1} is irreducible for each 1. Also $a=e_{a} \Pi q_{1}, b=e_{b} \Pi_{1}$, where e_{a}, e_{b} are units in S and q_{t}, r_{1} are irreducible. Therefore, $e_{a} e_{b} \Pi q_{1} \Pi r_{i}=p e_{c} \Pi p_{1}$ and so, since S is Gaussian, p is an associate of some q_{i} or some r_{i}. In the former case, $p \mid a$, and in the latter, $p \mid b$. Therefore, p is a prime.

Theorem 3.3. $\quad S$ is a Gaussian semigroup, $a, b \in S \Rightarrow a$ and b have a greatest common divisor.

Corollary 3.1. Any finite number of elements in a Gaussian semigroup have a greatest common divisor.

Problem 3.1. Prove Theorem 3.4.

Problem 3.2. Prove Corollary 3.1.

Problem 3.3. Prove that in $F[x]$, where F is a field, all irreducible elements are polynomials of degree $n \geqslant 1$. (Hint: show all nonzero elements of F are units.)

Definition 3.2. $f(x) \in A[x], f(x) \neq 0, A$ is a Gaussian domain. Then $f(x)$ is primitive \Leftrightarrow every g.c.d. of the coefficients of $f(x)$ is a unit.

Theorem 3.4. Let A be a Gaussian domain, and F its field of quotients (cf. Definition 1.8 of Chapter 4). Let $f_{1}(x), f_{2}(x) \in A[x]$
be primutive Then $f_{1}(x), f_{2}(x)$ are associates in $F[x] \Leftrightarrow f_{1}(x), f_{2}(x)$ are associntes in $A[r]$

Proof Since $f_{1}(x) f_{2}(x)$ are associates in $F[x], 3 \alpha \neq 0$, $\alpha \in I \Rightarrow f_{1}(x)=\alpha f_{2}(r)$ Then $\alpha=d_{2} d_{1}^{-1}$, where $d_{1}, d_{2} \in A$ Then $d_{1} f_{1}(x)=d_{2} f_{2}(x)$ Thus d_{1} divides all the coefficients of $d_{2} f_{2}(x)$ and so sunce $f_{2}(x)$ is promitive $d_{1} \mid d_{2}$ Similarly. $d_{2} \mid d_{1}$ Therefore, $d_{2}=d_{1} e$, where a is a unit in A Thertore, $f_{1}(x)=c f_{2}(r)$ Therefore $f_{1}(x)$, $f_{7}(x)$ are associntes in $A[x]$

Tifeorfm 35 (Gauss Lemmal $f(x), g(x) \in A[x], A$ is Gaussian $f(x) \quad \mathrm{g}(x)$ are pnomive $\Rightarrow f(x)_{g}(x)$ is primitive

Proof Let $f(x)=\sum_{i=0}^{n} a_{1} x^{4} \quad g(x)=\sum_{t=0}^{m} b_{t} x^{1} . \quad f(x) g(x)=$ $\Sigma_{i=0}^{n+n}\left(1, x^{\prime}\right.$ and suppose that $f(x) R(x)$ is not promitive Then $\mathcal{Z}_{p} \in A_{\text {, }}$ p irreducible $\exists p \|_{1}, t=01 \quad n+m$ Since $f(x)$ is primitive not all a_{1} are divisible by p Let a_{k} be the first of the a_{1} not divisible by p and simplarly let b_{j} be the first b_{1} not divistble by p Now the coeff cient of $r^{h+j} 1 s a_{k} b_{j}+t_{k+1} b_{p_{1}}+\quad+a_{k} b_{j+1}+\quad$ Here p divides dill terms except the one written first and so since by hypothess $p\left|c_{k+1} p\right| a_{k} b_{j}$ Hence by Theorem $32 p \mid i_{x}$ or $\beta \mid b_{j}$ which is a contra diction Therefore $f(x) g(x)$ is primative

Theorem $36 f(x) \in \boldsymbol{f}[x] A$ is Gaussian $f(x)$ is irreducible in $A[r] \operatorname{deg} f(x)>0 \Rightarrow f(x)$ is irreducibie in $F[x]$ where Γ is the field of quotients of A

Problem 34 Prove Theorem 37 [Him suppose $f(x)=$ $\phi_{1}(x) \phi_{n}(x)$ in $F[r]$ Then find common denommators for the coeffi clents of $\phi_{1}(x)$ and $\left.\phi_{2}(x)\right]$

Theorem 37 (Eisenstem) Let $f(x)=\sum_{i=0}^{\#} H_{1} x^{i} \in A[x]$ where A is Gaussi in and $f(x)$ is promitive if \exists a prome $p \in A \exists p \mid a_{1}$ $\forall 1<n p / a_{n} p^{2} / a_{0}$ then $f(x)$ is irreducible on $A[x]$

Problem 35 Prove Theorem 38 [Hint assume a factoriza tion of $f(x)$ and proceed in a manser similar to the proof of Theorem 36]

Problem 36 if $f(x)=\sum_{1}^{1}$ o $d_{f} \mathrm{t}^{\prime}$ we define $f(x+c)$ as the polynomaal obtained by expanding $\Sigma_{i=0} d_{i}(x+\varepsilon)^{\prime}$ Now prove that if I is an integral domain then $f(x) \in I[x]$ is irreducible in $I[x] \Leftrightarrow$ $f(x+c)$ is irredacible in / $[x]$

Probl fm 37 Prove that the cyclotomic polynomal $x^{p} 1^{1}+x^{\prime \prime}$ g $+\quad+x+1=\left(x^{p}-1\right) /(x-1) p$ a positive rational prime is irre ducible in $Z[x]$ (Hint replace x by $x+1$ then use Problem 36)

Problem 3.8. Prove that if I is an integral domain, $c, r \in I$, $c \mid r$, then $c \mid r^{\prime \prime}, \forall n \in Z^{*}$.

Problem 3.9. Prove that if I is an integral domain, p a prime in $I, p \mid r^{\prime \prime}$, then $p \mid r$.

Problem 3.10. Prove that if A is a Gaussian domain, a, b, $c \in A, a$ and c are relatively prime, $c \mid a b$, then $c \mid b$.

Theorem 3.8. Let A be a Gaussian domain and let F be its field of quotients. Let $f(x) \in A[x], r / s \in F, r, s$ be relatively prime, and $f(r / s)=0$. Then, if $f(x)=a_{0}+a_{1} x+\cdots+a_{n} r^{n}$ is a primitive polynomial, $s \mid \sigma_{n}$ and $川 \mid c_{0}$.

Corollary 3.2. If a_{n} is a unit in A, then all the zeros of $f(x)$ in R are in A.

Problem 3.11. Prove Theorem 3.8 and its corollary.
Problem 3.12. Prove that the following polynomials are irreducible in $Z[x]$: (a) $x^{2}-3$, (b) $x^{2}+x+3$, (c) $x^{3}-2$, (d) $x^{3}-x+2$. (Hint: if a polynomial of degree 2 or 3 is reducible, it must have a linear factor.)

Problem 3.13. Give an example of a reducible polynomial of degree 4 or higher, reducible in $Z[\lambda]$, but having no linear factor in $Z[x]$.

Problem 3.14. Prove that if p is a prime in $Z, \neq a \in Q \ni$ $a^{n}=p$, for $n>1, n \in N$.

Problem 3.15. Generalize the statement of Problem 3.14.
Problem 3.16. Prove that the following polynomials are reducible in $Z[\mathrm{r}]$: (a) $x^{4}+2 x^{2}+1$, (b) $x^{4}+x^{2}+1$.

Problem 3.17. Find all irreducible polynomials of degree 2 in $Z_{2}[x]$; find some such of degree 3.

Problem 3.18. Do the same as in Problem 3.17 for $Z_{3}[x]$.

4. EUCLIDEAN DOMAINS

We now consider a type of domain which we shall presently prove is Gaussian.

Definition 4.1. An integral domain I is a Euclidean domain $\Leftrightarrow \exists$ a mapping δ of I into the nonnegative integers such that (1) $\delta(a)$
$=0 \Leftrightarrow a=0(2) \forall a b \in I \delta(a b)=\delta(a) \delta(b)$ (3) $\vee a b \in l b \neq 0$ $\exists q r \in I \exists a-b q+r$ where $\delta(r)<\delta(b)$

Thforest 41 The following are Eucludenn domains
(1) Z with $\delta(a|=|a|$
(2) $F[x]$ where F is 3 field with $\delta(f(x))=2 d \operatorname{sic}$ if $f(x) \neq 0$ $\delta(0)=0$

Pronf Theorem 171 of Chapter 2 Theorem 13 of this chapter and its corollary

Thforfm 4 Let aEI a Euclidean doman Then $\delta(a)-1$ $\Leftrightarrow a$ is 1 umt of ।

Proof First we note that $\delta(1)-1$ since $t=11$ and so by (${ }^{7}$) of Defint on $41 \delta(1)=\delta(1) \delta(1)$ und smence $\delta(1) \in Z^{*} \delta(1)=1$

Consider the implecation $=$ Let abe a unt Then $3 b \in I \exists a b$ $=1$ So $\delta(c) \delta(b)-1$ nnd since $\delta(a) \in Z^{*} \delta(a)=1$

Consider now the mplication \Rightarrow Let $\delta(a)=1$ Then $\exists a r$ E I
 unit

Theorem 43 apeI a commututive ring with an identity element p itreducible $\Rightarrow a \mathrm{gcd}$ of a and p es an associve of 1 or of p

Theordm $44 \quad p \in I$ a Euchdean domain p irreducible $\Rightarrow p$ is prime

Theorem 45 A Euclidean domain is Gaussian
Problem 41 Prove Theorem 43
Problem 42 Prove Theorem 44 (Follow the proof of Theo rem 176 of Chrpter 2)

Problem 43 Prove Theorem 45 (Follow the proof of Theo rem 177 of Chapter 2$)$

Problem 44 Prove that of $f(x) g(x) \in F[x] F$ a field \exists $s(x) ;(x) \in F[x] \exists s(x) f(t)+1(x) g(x) \quad d(x)$ where $d(x)$ is the mome ged of $f(x)$ and $g(x)$

Theorem $46 \quad A$ is a Gaussian domain $\Rightarrow A[x]$ is a Gaussain doman

Probleni 45 Prove Theorem 46 (Hint let \hat{F} be the field of quotrents of A Then apply Theorems 414537 etc)

5. POLYNOMIALS IN TWO INDETERMINATES

Let R be a ring with an identity element and, as before, let I be the set of nonnegative integers. Then by Theorem 7.1 of Chapter $4, R^{(\times \times)}$ is a left R-module having as basis $\left\{e_{m, n}\right\}$ where $e_{m, n}=\left(b_{1,3}{ }^{m, n}\right)_{(1, n) \in I \times I}$, where $b_{m, n} n^{m, n}=1$ and $b_{i, 0},{ }^{m, n}=0$ for $(m, n) \neq(i, j)$. We define $e_{r, s}$ $\cdot e_{u, v}=e_{r+u, s+l}$. Then $e_{0,0}$ is a neutral element for multiplication and if we let $e_{1,0}=\lambda, e_{0,1}=y$, we have $e_{m, n}=x^{\prime \prime} y^{n}$ for $(m, n) \in I \times I$. Then, as before, by Theorem 8.3 of Chapter 4, we have an associative multiplication defined in $R^{(1 \times l)}$ and it is distributive with respect to addition when we make the usual defintion of the product of two elements when expressed as a linear combination of the basis elements. Lastly, we replace the element $r e_{0,0}$ by $r, \forall r \in R$.

Definition 5.1. The ring defined above is called the ring of polynomials in the two indeterminates x, y and is denoted by $R[x, y]$, and if R is commutative, it is called a polynomial algebra. An element $f(\lambda, y)=\sum_{i=0}^{n} \sum_{j=0}^{n} a_{u} x^{\prime} y^{\prime} \in R[x, y]$, is called a polynomial in the udeterminates λ, y, the $a_{i j}$ are called the coefficients of $f(x, y), a_{v}$ is called the coefficient of $x^{\prime} y^{\prime}$, and if one or more of the $a_{1 j} \neq 0$, and if $a_{m n}$ is a coefficient such that $m+n$ is maximum of $i+j$ for all nonzero $a_{1 j}$, then $m+n$ is the degree of $f(x, y)$.

To consider such a ring as $(R[x])[y]$ is possible following a remark in Section 1, but it is notationally simpler to call the elements of the basis over $R[x] f_{0}, f_{1}, f_{2}, \ldots$ and in particular f_{1}, y. Using this and the above definition the following theorem may easily be proved.

Theorem 5.l. If R is a commutative ring with an identity element, the following rings are isomorphic: $R[x, y],(R[x])[y]$, $R[y, x],(R[y])[x]$.

Problem 5.1. Prove Theorem 5.1.
Problem 5.2. Examine the theorems pertaining to $R[x]$ and see which ones generalize to $R[x, y]$.

6. FIELDS OF QUOTIENTS OF POLYNOMIALS

Definition 6.1. If F is a field, the field of quotients of $F[x]$ is denoted by $F(x)$; that of $F[x, y]$ by $F(x, y)$. [Note: elements of the above fields are sometimes called rational functions of x or of x and y.]

Theorem 6.1. If I is an integral domain, and F its field of
quotients then the field of quotients of $I[r]$ is $F(t)$ that of $I[x$,$] is$ $F(x y)$

Problem 6! Prove Theorem 6 !

7 IDEALS

We are now gong to consider a particular kind of subring which for rings plays much the same role as does an invinant subgroup for groups

Definition 71 A subring of of inge R is $3 / e f f$ (right) ideal $\leftrightarrow \pi$ is a left (right) R module A fno stded (alsocalled bilateral) adeal is a subring which is both 7 left and a night odeal in R

If it is clent from the context or if it does not matter (75 is the case if R is eommut itive) which side an ideal is we shall say merely ideal

Probiem 71 Prove that α is in left (nght) ided in oring $R \Leftrightarrow$

Problemt 72 Prove that a is ilen (nght) ideal in 7 ring $R \Leftrightarrow$ (1) $\forall a_{1} a_{2} \in a \quad a \quad a \in u$ and (2) $\forall a \in \& \forall r \in R r a \in \pi$ ($a r \in \Delta x$)

Probleat 73 Prove that in Z the mutiples of in integer m form an ideal

Problem 74 Prove that in $F[x]$ where F is a field the mut tuples of any particular polynomial $f(x)$ form an ideal

Pronlem 75 Prove thet in $F[x 1]$ where F is a field the set of all polynomials with $a_{0}-0$ form in ideal

Proslem 76 Prove that in every ring (except one ring) there are at least two distinet ideals

Problem 77 Determine all the ideals ma division ring in a field

Theoreme 7 let S be iset of ideals in a mag R Then the common part of the ideals of S is an ideal in R ind is contuned in every ideal of $\$$

Theoremi 72 Let at be an adeal in a ming R Then consuder ing R as in R module $A C$ is a submodule of R Further if A is any set of elements of R the smallest teft (nght) ideal on R contanning A
is the submodule generated by A (cf. Definition 5.2 of Chapter 4). This ideal is called the left (right) ideal generated by A.

Problem 7.8. Prove Theorems 7.1, and 7.2.
Problem 7.9. Let $A \subset R$, a ring. Give the general form of an element in the left ideal generated by A.

Problem 7.10. Do the same as in Problem 7.9 for a ring with an identity element.

Problem 7.11. Give an example of a ring and an ideal in it for which the form of Problem 7.10 is necessary.

Definition 7.2. An ideal μ is a principal ideal $\Leftrightarrow \mu$ is generated by a single element a. If a principal ideal is bilateral, it is usually denoted by (a).

Problem 7.12. Show that the ideals of Problems 7.3, 7.4 are principal ideals.

Problem 7.13. Show that the ideal of Problem 7.5 is not a principal ideal.

Problem 7.14. Give the form of a general element of a principal ideal in a ring when R has an identity element and when R does not.

Problem 7.15. Prove that if R has an identity element, then $R=(1)$.

8. PRINCIPAL IDEAL RINGS

Definition 8.1. A ring R is a principal ideal ring \Leftrightarrow every ideal in R is principal.

Theorem 8.1. A Euclidean domain is a principal ideal ring.
Corollary 8.1. Z and $F[\lambda]$, where F is a field, are principal ideal rings.

Problem 8.1. Prove Theorem 8.1 and its corollary.
Problem 8.2. Show that a Gaussian domain need not be a principal ideal ring. (Hint: use Theorem 4.6 twice and Problems 7.5, 7.13.)

Theorem 8.2. An integral domain I is a principal ideal ring \Leftrightarrow
（1）$\forall a b \in I a b$ not both zero Taged d of a and $b d \in I$
（2）$⿻ コ 一 𠃌 s \in!\exists d=\mathbf{r a + s b}$
（3）if in the sequence $a_{1} a_{2} a_{3}$ of elements of $/$ each is a divisor of the preceding $7 n \ni \vee \& \geqslant n a_{k}$ is an associate of a_{n}

Prorlem 83 Prove Theorem 82

9 QUOTIENT RINGS AND EQUIVALENCE REI ATIONS IN A RING

In Chapter 3 we found in Theorems 31 and 32 a complete solution to the problem of determang whech equivalence sehtions were com patible with the structure of a group Here we consider the same problem for rings The complect solution is given by Theorems 91 and 92 As promised ideals play the role which anvariant subgroups played before

Definition 91 an equivalence relation P defned between elements of t nag R is companhle wh the structure of R（or some tumes more brefly with R ）$\Leftrightarrow \boldsymbol{P}$ is comptible with all internal and external liws of composition of R

Theorem 91 If a is a bilateral ideal in a ring R then the rela ton（ $x P y \Leftrightarrow x-y \in \mu$ ）is an equivilence relation compatible with R

Problem 91 Prove Theorem 91 （Hint use Theorem 31 of Chapter 3 and Defimson 711

Tifeorem 92 Every equivilence relation P in a ning R com patible with R is of the form $(x P) \Leftrightarrow x-1 \in \pi)$ where \mathcal{L} is a blateral deal of R

Problem 92 Prove Theorem 92 （Hint use Theorem 32 of Chrpter ${ }^{3}$ ）

Theorem $93 \quad$ Let R be anng ata batateral ideal in $R P$ the equwatence relation of Theorem 91 Then the quotent set of R by P is a ring

Proof Ths follows ummedately from Theorems 121122 124 of Chapter 2 and Theorem $\mathbf{3} 8$ of Chapter 3 generalized to groups with operators

Definition 92 The reng whose existence is established by Theorem 93 is denoted by Rlace and is called the quotient ring of R
with respect to \boldsymbol{v}. Sometimes it is called a difference ring and is denoted by $R-\mu \epsilon$. The equivalence relation of Theorem 9.3 is often denoted by $x \equiv y \bmod \mu$.

Problem 9.3. Prove that in $Z, a \equiv b \bmod (m)$ is equivalent to $a \equiv b \bmod m$. Thus show that $Z /(m)$ is isomorphic to Z_{m}.

Problem 9.4. Let R be the ring of even integers and $\mu=(6)$. Find $R / a r$.

Problem 9.5. Let $R=Z_{24}$, $\nu \tau=(3), b=(6)$. Find $Z_{24} / \nu t$ and Z_{24} / b. Are there divisors of zero in either of these rings?

Problem 9.6. Let $R=Z_{2}[x]$, $\mu=\left(x^{2}+x+1\right)$. Find R / μ. Letting θ represent the equivalence class containing x, write the addition and multiplication tables for $R / \mu r$. Is it a field?

Problem 9.7. Do the same as in Problem 9.6 for R / μ where $\mu r=\left(x^{3}+\lambda+1\right)$.

In stating the next theorem, we write the letter for a homomorphism as an exponent. We shall frequently do this in Chapter 6.

Theorem 9.4. Let α be a homomorphism of a ring R into a ring S. Then the set of all elements $r \in R \ni r \alpha=0$ is a bilateral ideal μr in R and $R \alpha$ is isomorphic to $R / \mu r$.

Problem 9.8. Prove Theorem 9.4.

10. PRIME AND MAXIMAL IDEALS

Definition 10.1. An ideal $d e$ in a ring R, is a prime ideal in $R \Leftrightarrow(a b \in \mu, a, b \in R \Rightarrow$ either $a \in \mu$ or $b \in \mu)$.

Definition 10.2. An ideal $\mu \neq R$ in a ring R, is a maximal (divisorless) ideal \Leftrightarrow (f, an ideal in $R, \ell \neq \mu, \ell \supset \mu \Rightarrow \ell=R$).

Problem 10.1. Prove that in Z, if p is a prime, (p) is prime and maximal.

Problem 10.2. Prove that if $\phi(x)$ is irreducible in $F[x]$, where F is a field, then $(\phi(x))$ is prime and maximal.

Problem 10.3. In $I[x, y]$, where l is a Gaussian domain in which 2 is a prime. show that the following ideals are prime: (x), $(x, y),(x, y, 2)$, and show that $(x, y, 2)$ is maximal.

Problem 10.4. Show that the ideal of Problem 7.5 is a maximal ideal.

In Problem 103 we have two examples of prome ideals which are not maxim a However anacommutave ning with an dentity element every miximil ideal is pume See Corollary 10 I below

The nature of the quotient nog $R / 4 e$ naturally depends in part on the nature of the ring \boldsymbol{R} bui also on the nature of the teal $\boldsymbol{\mu}$ For ex ample R moy hive no divisors of zero while $R / k x$ does [for instance $Z /(6)]$ or on the other hand R may hive divisors of zero and lack an dentity element while R/ax may be a field The next two theorems give importint information in thas respect

Theorrm 10! I et R be a commutuve ring with an identity
 x prome ideal

Proor Let ve be a prime ideal Uang the notation introduced in Defintion 92 to show that Rjot is in integril domint we must show that if $a b=0$ mad $a c a \neq 0 \bmod a r$ then $b=0 \bmod b e$ But this follows immedintely from the definition of prome ideal since $x-0$ $\bmod n \Leftrightarrow x \in M$

Let $R / a t$ be an miegrat doman We must stow then if $u b \in \mathbb{B}$
 ve Thus if $u \in \in \pi \quad u b-0 \bmod x$ and since in megral domam does not have divisors of zero we must have $b=0$ mod $d x \Rightarrow b \in V$ Therefore αe is prome

Theorem $1^{\text {a }}$ Let R be a commutative ring with an identity element and $x c$ in deal in R Then $R / a r$ is d field $\Leftrightarrow x \in$ is a maximal ideal

Proof Let $x e$ be a maximal ide al To show that $R / a x$ is a field It is sufficient to show that each equvalence $\mathrm{cl}_{\text {is }}$ not zero has an in verse For thas it is sufficient to show thit for any $c \in R \ni c \neq 0$ $\bmod a \operatorname{ar} b \in 9 a-1 \bmod a$ Then the equiv lence class con tanning b will be the merise of that conatning $\&$ Consider the ideal generated by or and $c \quad S$ nce or is a miximal ideal and $c \xi a x$ this ideal is $R=$ (1) ie I is in the ideal generated by $t \in$ and c Thus $\exists a \in M$ and $b \in R \Im I-a+b$ Therefore $I=b c \bmod a$ Therefore R / \mathbb{N} is a field

Let $R / v x$ be a field Then given $\not \neq 0 \bmod a \exists b \in R \ni c b=1$ mod $a x$ This implies that the ideal generated by $\& x$ and any element $\notin \mathrm{k}$ contains I and is therefore the whole $\mathrm{r} n g$ Therefore $a x$ is maximal

Corollary 101 Under the conditions of Theorem 101 or 102 a maximal ideal is prime

Problem 10.5. Prove Corollary 10.1 without using Theorem 10.2.

Problem 10.6. Let R be a commutative ring without divisors of zero and let W be the ring obtained in Problem 1.23 of Chapter 4. Let Y be the set of all $z \in W \ni \forall r \in R, z r=0$. Prove that Y is a prime ideal in W.

Problem 10.7. Let R be a commutative ring without divisors of zero. Prove that \exists an integral domain D containing R as a subring. (Hint: let $D=W / Y$ where W and Y are as in Problem 10.6.) This is the improvement on Problem 1.23 of Chapter 4 which was promised earlier.

11. EXTENSIONS OF FIELDS

In the rest of this chapter we are going to consider fields. First, we shall prove in this section that certain types of extensions of fields exist, then we shall analyze the structure of fields. Finally, we shall at the end of the chapter consider extensions of isomorphisms between fields.

Theorem 11.1. Let F be a field. There always exists a field K containing F as a subfield and an element $\theta \in K$ such that θ is not a zero of any polynomial of positive degree $f(x) \in F[x]$.

Proof: One such field is $F(x)$, the field of quotients of $F[x]$, as defined in Definition 6.1. One such element θ can be taken to be λ, since if it were the zero of a polynomial $f(x) \in F[x]$, we would have the elements $1, x, x^{2}, \ldots, x^{\prime \prime}$ linearly dependent, where $n=\operatorname{deg} f(x)$, and this is impossible since $1, x, x^{2}, \ldots$ form a basis of $F[x]$ and so are linearly independent over F.

Theorem 11.2. Let F be a field. If \exists a polynomal $f(x) \in$ $F[1] \ni$
(1) $\operatorname{deg} f \geqslant 2$,
(2) $f(x)$ is irreducible in $F[x]$, then \exists a field K containing F as a subfield $\ni K$ has a zero θ of $f(x)$. (Here we use "containing" in the sense that F is imbedded in K, as we have been doing.)

Proof: By Problem 10.2, $(f(x))$ is a maximal ideal in $F[x]$. Hence by Theorem $10.2, F[\lambda] /(f(x))$ is a field. The equivalence classes of K determined by elements of F form a field isomorphic to F, and the equivalence class determined by x is a zero of $f(x)$.

Example 11.1. $f(x)=x^{2}+x+1$ is an irreducible polynomial
in $L_{2}[x]$, ind so by Theorem $102 Z_{2}[r] /\left(r^{2}+x+1\right)$ is a field K We wish to determine the elements of this field By Theorem 14 every polynomal $g(x) \in Z_{2}[r]$ is $g(x)=a x+b \bmod \left(x^{2}+x+1\right)$ where $a b \in Z_{2}$ Thus there are only four equivilence classes in λ Let the equivalence class contaming x be θ and those determined by 0 I be denoted by 01 respectively Then the four elements of K are 0 I θ $\theta+1$ Since θ is a zero of $\boldsymbol{r}^{2}+r+1$ we have $\theta^{2}+\theta+1=0$ or $\theta^{2}=\theta+1$ and by this Iist relation we can determine all products Thus $\theta \quad(\theta+1)=\theta^{2}+\theta=\theta+1+\theta=1 \quad(\theta+1)^{2}=\theta^{2}+1=\theta+1$ $+!=\theta$ etc

Example 1t $2 f(r)=x^{3}-2$ is in irteducible polynomal in $Q[x]$ and so $Q[x] /\left(x^{3}-2\right)$ is a field λ. We wish to determine the elements of this field By Theorem 14 if $g(x) \in \varrho[x] g(x)-a x^{2}+$ $b r+c \bmod \left(x^{2}-2\right)$ and here we have infintely many elements in A sunce there are infintely many shouces for $a b \in$ Let θ denote the equivalence class containing x ind let the equivalence class determined by $r \in Q$ be denoted by r Then since θ is a zero of $x^{3}-2$ we have $\theta^{7}=2$ Thus $\left(\theta^{4}+2\right)(\theta-5 \theta+1)-\theta^{4}-5 \theta^{7}+3 \theta^{2}-10 \theta+2=9 \theta$ $-10+3 \theta^{2}-10 \theta+2-30-80-8$ if it is desired to find the inverse of $c_{2} \theta+c_{1} \theta+c_{0}$ then one way is to use Problem 44 with $f(x)$

Problem 111 Prove the last statement above
Problem 112 For the field of Example 112 find $\left(\theta^{2}-49\right.$ +1) ${ }^{\prime}$

Problem il 3 Take any polynomal you found in Problem 318 which is irredueible in $Z_{2}[x]$ and desenbe the field obinned by using it as in Example 111

Problem 114 Prove that $f(x)-\boldsymbol{r}^{3}+x+1$ is irreducible in $Q[x]$ and discuss the field obluned by using, it as was done in Exam ple 112 with $r^{3}-2$

Problem it 5 Descrbe the field $Q[x] /\left(\mathrm{r}^{4}-2\right)$ Find the inverse of $\theta^{2}+3$ in it where θ is the zero obtarned for $x^{4} \quad 2$

12 STRUCTURE OF FIELDS

Theorem I2 I Let K be a field containing F as a subfield Then K is a vector space over F

Proof This follows directly from Problem 44 of Chapter 4 since K is a K module

Note: Henceforth, for brevity, if we write the field $K \supset F$, we shall mean that the field K contains the field F as a subfield, unless some remark is made specifically to the contrary.

Definition 12.1. Let $K \supset F$. Then the dimension of K over F is called the degree of K over F and is denoted by [$K: F$], if it is finite.

Theorem 12.2. Let $K \supset F$ and let $\theta \in K$. The vector space L over F generated by $1, \theta, \theta^{2}, \ldots$, i.e., the set of all $\theta^{\prime}, i \in\{0\} \cup N$, is a subintegral domain l of K and is the smallest integral domain in K containing F and θ.

Proof: The element 1 is an identity element, there are no divisors of zero since we are dealing with a field K, and closure with respect to multiplication follows from the obvious fact that the product of two elements of the form $\Sigma a_{t} \theta^{2}$ is another element of the same form.

Definition 12.2. Let $K \supset F, \theta \in K$. Then θ is algebraic or transcendental over F according as the integral domain I of Theorem 12.1 as a vector space over F has finite dimension or not.

Theorem 12.3. Let $K \supset F, \theta \in K$, and θ be algebraic over F. Then
(I) \exists a unique monic polynomial $f(x) \in F[x]$, irreducible in $F[.] \ni f(\theta)=0$
(2) the dimension of I, of Theorem 12.2 for θ, is equal to the degree of $f(x)$,
(3) for θ, the integral domain of Theorem 12.2 is a field, the smallest subfield of K which contains F and θ.

Proof: Let n be the dimension of I over F. Then by Problem 6.1 of Chapter 4, the elements $1, \theta, \theta^{2}, \ldots, \theta^{\prime \prime}$ are linearly dependent over F; i.e., $\exists a_{0}, a_{1}, \ldots, a_{n} \in F$, not all zero, $\ni a_{0}+a_{1} \theta+a_{2} \theta^{2}$ $+\cdots+a_{n} \theta^{n}=0$. Then $a_{n} \neq 0$, for otherwise, if $a_{\text {, }}$ were the particular a_{i} of largest subscript of the nonzero a_{i}, then we should have on dividing by $a_{3}, \theta^{J}=b_{0}+b_{1} \theta+\cdots+b_{J-1} \theta^{-1}, j<n$, from which it follows immediately that a subset of $1, \theta, \ldots, \theta^{-1}$ (perhaps the whole set) would form a basis of I, and I would not be of dimension n over F. So. if we let $c_{i}=a_{1} / a_{n}$, we have θ a zero of the monic polynomial $f(x)=x^{\prime \prime}+c_{n-1} \cdot 2^{n-1}+\cdots+c_{1} x+c_{0} \in F[x]$, and we have proved that θ cannot be a zero of a polynomial of lower degree.

We must show that $f(x)$ is irreducible in $F[x]$. Suppose, on the contrary, that $f(x)=g(x) h(x)$, where $g(x), h(x) \in F[x]$ and each
is of positive degree Then $f(\theta)=g(\theta) h(\theta)$ and since K is a field ether $g(\theta)=0$ or $h(0)=0$ But by the above this is impossible since $g(x)$ and $h(x)$ are by hypothesis of degree less than n

We must show that $f(x)$ is unque Let $x(x) \in F[x]$ be monte and $g(\theta)=0$ Clearly deg $\delta \geqslant n$ Hence by Theorem $14 \exists g(x)$ $r(x) \in F[x] \ni g(x)=f(x) q(x)+r(x)$ nad $r(x)=0$ or deg $r(x)$ $<n$ Now $0=g(\theta)=f(\theta) q(\theta)+r(\theta) \Rightarrow r(\theta)-0 \Rightarrow r(x)=0$ since olherwise $0 \leqslant \operatorname{deb}_{b} r(x)<n$ Therefore $g(x)=f(x) q(x)$ and of $\mathrm{A}(x)$ is irreducible in $F[x]$ deg $q(x)=0$ and if $g(x)$ is monic $q(x)-1$ and $f(x)=g(x)$

We have now establashed conclusions (1) and (2) To prove (3) we first show that each nonzero element of 1 has ant inverse in d Let $\alpha=a_{0}+a \theta+\quad+a_{n} \theta^{2} \quad$ ' $\in I$ let $g(x)=a_{0}+a_{5} x+$ $+a_{n} 1^{x} \quad$ I Since $f(x)$ is irreducible $(f(x) g(x))=1$ ind so by Problem 44 年 $\mathrm{f}(\mathrm{x}) \quad \mathrm{f}(\mathrm{x}) \in \mathrm{E}[\mathrm{x}] \ni \mathrm{s}(x) f(x)+f(x)_{s}(x)-1$ Then since $f(\theta)-0$ we hove $t(\theta) g(\theta)-t(\theta) a-1$ Ie $f(\theta)$ is the inverse of $h(\theta)$ and $f(0) \in f$ Since any subfield of \AA contzining F and 0 must contain / 7.11 is proved

Definition 123 Let $\lambda \supset F \theta \in \lambda \theta$ algebraic over F Then if $f(x)$ is the arreducible monic polynomial in $F[x]$ having θ as a zero $f(x)$ is called the nunumum nonnomal of θ over F and the degree of $f(x)$ is the desree of θ orer F

Definitioy 124 Lei $K \supset F$ and $\theta \in \AA$
(1) If θ is algebraic over F the iniegral doman f of Theorem 122 which in this case is a field is denoted by $F(\theta)$
(2) If θ is transcendental over F the field of quotients of the inte gral domain of Theorem 122 is denoted by $F(\theta)$
(3) let $K \supset L \supset F$ Then L is a simple extennon of $F \Leftrightarrow \exists \theta \in L$ $\Rightarrow L=\bar{F}(0)$
(4) K is afsebratc oier $F \Leftrightarrow$ each element of Λ is algebrac over F Otherwise κ is transcendental over F

Corollary 121 Every element of $F(\theta)$ if θ is algebraic over F can be expressed uniquely in the form $d_{0}+d \theta+\quad+d_{n}{ }_{1} \theta^{n}{ }^{1}$ where $d_{k} \in F_{1=0} \quad n-1$ and where n is the degree of θ over F

Corollary 122 The degree of θ over F if θ is algebraic over F is equal to the degree of $F(\theta)$ over F

Corollary 123 If $f(x)$ is the minmum polynomal of θ algebrac over F and $f g(\theta)-0 f(x) \in F[x]$ then $f(x) \mid g(x)$

Theorem 12.4. Let F be a field. Then there always exists a field K which is a transcendental extension of F.

Proof: The field of quotients of the polynomial ring over F is such a field.

Lemma. Let $K \supset F$ and $\theta \in K$. Then $\theta \in F \Leftrightarrow$ the minimum polynomial of θ over F is of the first degree.

Problem 12.1. Prove the lemma.
With the above lemma and Theorem 12.3, we can restate Theorem 11.2 as follows:

Theorem 12.5. Let F be a field. Then \exists an element θ, algebraic over F and a simple extension, $F(\theta) \neq F$, of $F \Leftrightarrow \exists f(x) \in F[x]$ of degree $n \geqslant 2 \ni f(x)$ is irreducible in $F[x]$. In the latter case, $F(\theta)$ has a zero of $f(x)$.

Problem 12.2. Finish the proof of Theorem 12.5.
Theorem 126 . Let $L=F(\theta)$ be a simple extension of a field F, let θ be algebraic over F, and let $\phi \in L$. Then ϕ is algebraic over F, and the degree of ϕ over F is \leqslant degree of θ over F.

Proof: By Theorem 12.3 and Definition 12.3, the degree n of θ is equal to the degree of $F(\theta)$, i.e., is equal to the dimension of $F(\theta)$ as a vector space over F. Since $\phi \in F(\theta), \phi$ is equal to a linear combination with coefficients in F of $1, \theta, \theta^{2}, \ldots, \theta^{n-1}$ and hence so is every power of ϕ. Thus the set $1, \phi, \phi^{2}, \ldots, \phi^{n}$ are $n+1$ elements of the vector space $F(\theta)$ and so are linearly dependent. Thus by Definition $12.2, \phi$ is algebraic over F, and since $F(\phi) \subset F(\theta)$, degree of $\phi \leqslant n$.

Corollary 12.4. Let $\theta \in K \supset F$. If θ is algebraic over F, $F(\theta)$ is algebraic over F.

Problem 12.3. For the field of Example 11.2, find the degree of $\theta+1$; of θ^{2}; of $\theta^{2}+1$.

Problem 12.4. For the field $Q(\theta)$ of Problem 11.5, find the degree of θ^{2}, its minimum polynomial, and describe the field $L=Q\left(\theta^{2}\right)$. Find the degree of θ over L and describe $L(\theta)$. Do the same for θ^{3} over Q and $M=Q\left(\theta^{3}\right)$.

Problem 12.5. Consider $g(x)=\lambda^{6}-2 \in Q[x]$ and the field $Q[x] /(g(x))$. Treat this as in Problem 12.4. Describe the fields $Q\left(\theta^{2}\right), Q\left(\theta^{3}\right), Q\left(\theta^{4}\right), Q\left(\theta^{5}\right)$.

Problem 126 Let $F=Z_{p}(t)$ where p is a prime and t is transcendentil over Z_{p} Show that $f(x)-x^{n}-1$ is irreducible in $F[x]$ (Hint use Theorem 38 with A of the theorem $Z_{p}[t]$) Let θ be a zero of $f(x)$ Show that θ is a zero of multiphicity p of $f(x)$ and show that $F(\theta)-F(\theta)$ for $1-1 \quad p-1$

13 ADIUNCTION OF SEVERAL ELEMENTS TO A FIELO

We call the process of proceeding from a field F to a field A contanngs F and one or more specified elements adjunction of those elements to the field F

Definition 13 I Let \AA כ F and let A be any set of elements of Λ Then $F(A)$ is the smallest subfield of Λ which contann F and all the elements of A

That such a field always exists follows by considering the common pirt of all subficids of A which contun F and A

Theoremil3 Let $\alpha \supset F$ and $\theta_{1} \theta_{2} \in K$ Then $(F(\theta))\left(\theta_{2}\right)$ $-\left\{F\left(\theta_{2}\right)\right)\left(\theta_{1}\right)=F(A)$ where $A-\left\{\theta_{1}, \theta_{2}\right\}$

Probleat 131 Prove Theorem 13 !
Problem 132 Generalize Theorem 131 to the adjunction of $\theta_{1} \quad \theta_{a}$ Use induction to prove it

Theorem 132 Lei $K \supset L \supset F$ Then of $\{K F\}$ is finte $[K F]=[K L][L F]$

Proof Let $[L F]=n$ and $\left[\begin{array}{lll}L & L\end{array}\right]-m$ and let $\beta, \quad \beta_{n}$ be a basis of L over $F \quad \alpha_{1} \quad \alpha_{m}$ be a basis of K over L We shall show that the min elements $\alpha_{1} \beta_{1} \alpha_{1} \beta_{2} \quad \alpha_{1} \beta_{n} \alpha_{2} \beta_{1} \alpha_{2} \beta_{2}$ $\alpha_{m} \beta_{a}$ form a basis of K over F

First let $x \in K$ Then $x-\Sigma_{i}^{n}, d \alpha_{f}$ where the $d \in L$ and so $d_{i}-\sum_{j=1}^{n} e_{t j} \beta_{j}$ where the $e_{t \in} \in F$ Then $x=\Sigma_{i}^{m}, \Sigma_{l-1}^{n} e_{U^{\alpha}} \beta_{i}$ where the $e_{j} \in F$ Hence every element of K can be expressed as a linear combination of these min etements with coefficients in F

Now we must show the haneas undependence of these min elements Suppose $\Sigma_{n=1}^{m} \Sigma_{j=1}^{n} c_{\alpha_{i}} \alpha_{j}=0$ where the $c_{0} \in F$ Then rewnting the equation as $\sum_{t=1}^{m}\left(\sum_{j-1}^{n} c_{w} \beta_{j}\right) \alpha=0$ we have $\sum_{j=1}^{N} c_{i j} \beta_{j}=0$ for $t=12 \quad m$ sance $\Sigma_{j=1}^{n} c_{d} \beta_{j} \in L$ and the α form a basis of K over L But since the β, are linearly independent over F we have $c_{u}-0$ for $t=12 \quad m_{j}=12 \quad n$ Therefore $\alpha_{1} \beta_{1} \alpha_{1} \beta_{2}$ $\alpha_{m} \beta_{n}$ form a basis of K over R and the theorem follows

Corollary 13.1. Let $K \supset L \supset F, K \supset H \supset F, M=L(H)$. Then $[M: F] \leqslant[L: F] \cdot[H: F]$.

Corollary 13.2. If θ is of degree n over F and ϕ is of degree m over F, then $F(\theta, \phi)$ is of degree $\leqslant m n$ over F.

Corollary 13.3. If θ is of degree n over F and ϕ is of degree m over $F(\theta)$, then $F(\theta, \phi)$ is of degree $m n$ over F.

Theorem 13.3. If the field K is of degree n over the field F, and if $\theta \in K$ and θ is of degree m over F, then $m \mid n$.

Corollary 13.4. If $\phi \in F(\theta)$, where θ is algebraic of degree n over F, then ϕ is algebraic over F, and the degree of ϕ over F divides the degree of θ over F.

Problem 13.3. Prove the corollaries to Theorem 13.2.
Problem 13.4. Prove Theorem 13.3 and its corollary.
Problem 13.5. Let $f(x)=x^{3}-2$ and $g(x)=x^{2}-5$ be elements of $Q[x]$. Let θ be a zero of $f(x)$ and ϕ be a zero of $g(x)$. Show: (a) $f(x)$ is irreducible in $Q(\phi)[x]$. [Hint: take a general element of $Q(\phi)$ and show that it cannot be a zero of $f(x)$.] (b) $g(x)$ is irreducible in $Q(\theta)[x]$, (c) $(Q(\phi))(\theta)=(Q(\theta))(\phi)$ and this field is of degree 6 over Q.

Problem 13.6. (a) Let θ be a zero of $f(x)=x^{3}-2 \in Q[x]$. Show that in $Q(\theta)[x], f(x)=(x-\theta)\left(x^{2}+\theta x+\theta^{2}\right)$.
(b) Let $g(x)=x^{2}+x+1$. Show that $g(x)$ is irreducible in $Q(\theta)[x]$. (Hint: use Corollary 13.4.)
(c) Let ω be a zero of $g(x)$. Show that $f(\omega \theta)=f\left(\omega^{2} \theta\right)=0$ and so $Q(\omega, \theta)$ contains all the zeros of $f(x)$.
(d) Show that the degree of $Q(\omega, \theta)$ over Q is 6 .

Theorem 13.4. Let $f(x) \in F[x]$, where F is a field. Then \exists a field $K \supset F \ni$ in $K[x], f(x)$ factors into a product of factors of the first degree $\in K[x]$.

Problem 13.7. Prove Theorem 13.4 by repeated application of Theorem 11.2.

Definition 13.2. Let $f(x) \in F[x]$, where F is a field.
(1) if $f(x)$ is irreducible in $F[x]$, a smallest field K containing F and θ, a zero of $f(x)$, is called a stem field of $f(x)$ over F,
(2) a smallest field L containing F and all the zeros of $f(x)$ [i.e., a smallest field $L \ni$ in $L[x], f(x)$ factors as in Theorem 13.4. We shall often describe this by saying that $f(x)$ factors completely] is
called a sphung field of $f(x)$ over F (older termanology was root field) It should be noted that in part (2) we do not requre that $f(x)$ be irre ducible in $F[x]$

Problla 138 Prove shat $Q\left(\epsilon^{8} \theta\right)$ of Problem 136 is a splat ting field of $x^{2}-2$ over A and show that $Q(\theta) Q(\omega \theta) A\left(\omega^{2} \theta\right)$ are stem fields

Problem 139 Show that $Q\left(a n\right.$ a) is a splttung field of $x^{2}-2$ over $Q(\theta)$ and give the stem fields of $x^{2}-2$ over $Q(\omega)$

Problem 1310 Give stem fields and a sphtung field of $x^{4}-2$ over Q

Probleal 1311 Do the same as in Problem 1310 for $x^{2}-2$ over Q

Problicm 1312 Do the same as in the last problem for the $f(v)$ of Example 111

Problem 1313 Find an irreducible polynemal of degree three of $Z_{2}[x]$ and find its stem fields and sphitting field over Z_{2}

14 TRISECTION OF AN ARBITRARY ANGLE

For this we need the following three exercises the first two of which are useful for other purposes as well

Problfm 141 Let $f(x, y) \quad(x, y) \in F[x, y]$ where F is a field te of degree 1 Defining a solution of $h(x$ i) - 0 for any $h(x y)$ $E F[x y]$ is an ordered pair $(a b) \in \lambda \times \lambda$ where $\lambda \supset F \ni$ $h(a b)=0$ show that the solutions common to $f(x, 1)-0$ and $g(x y)=0$ are in $F \times F$

Problem 142 Let $f(x y) g(x y) \in F[x)]$ where F is a field be of degree 1 or be of the form $(x-a)^{2}+(y-b)^{2}-r^{2}$ where a $b r \in \Gamma$ then the solutions common to $f(x, y)-0$ and $g(x y)-0$ $\in K \times K$ where A is of degree 1 or 2 over F

Problem 143 Prove that $4 r^{1} \quad 3 x-t$ is irreducible in $Q(t)$ $[x]$ where t is transcendental over Q (Hint use Theorem 38 with $A-Q[t])$

By the use of straghtedge and compasses all lengths which can be constructed by Problems 14123 are of degrec 2 over A (The identity of Q is the unit of tength) Since for an arbitrary angle θ a

Ine-segment of length $\cos \theta$ can be constructed, if it were possible to trisect θ, it would be possible to construct a line-segment of length $\cos (\theta / 3)$. Now $4 \cos ^{3}(\theta / 3)-3 \cos (\theta / 3)=\cos \theta$ (verify), so if it were possible to trisect θ, it would be possible to construct a line-segment which was a zero of $4 \lambda^{3}-3 x-t$, where $t=\cos \theta$. Let $\theta=60^{\circ}$. Then since this polynomial is irreducible in $Q[x]$ (verify), any zero would be of degree 3 over Q. But this could not belong to a field of constructible elements by Corollary 13.4 , since $3 \nmid 2^{n}$ for any $n \in N$. Thus an angle of 60° cannot be trisected in the prescribed manner. Similar reasoning applies to many other angles.

Problem 14.4. Fill in the details of the above discussion.

15. EXTENSIONS OF ISOMORPHISMS

We are now going to consider the following situation: \exists an isomorphism α between two fields, $F, \bar{F} ; K$ and \bar{K} are extensions of F, \bar{F}, respectively. Now we ask, when can the isomorphism α be extended to an isomorphism between K and \bar{K} ? Definition 3.4 of Chapter 1 is the definition of an extension of a mapping and so is pertınent here. We shall here, as will be customary in the following chapter, write the symbol for an isomorphism as an exponent.

Theorem 15.1. Let R, \bar{R} be two isomorphic commutative rings with identity elements and let α be an isomorphism between them. Then \exists an isomorphism β between $R[x]$ and $\bar{R}[x] \ni \alpha$ is the restriction of β to R. Further, $f(x) \in R[x]$ is irreducible in $R[x]$ $\Leftrightarrow[f(x)]^{\beta}$ is irreducible in $\bar{R}[x]$.

Problem 15.1. Prove Theorem 15.1. (Hint: define β as follows: $\forall r \in R, r^{\beta}=r^{\alpha}, x^{\beta}=x$, etc.)

Theorem 15.2. Let F, \bar{F} be two isomorphic fields under the isomorphism α. Let $f(x)=f_{0}+f_{1} x+\cdots+f_{n} x^{n}$ be irreducible in $F[x]$ and let $\bar{f}(\lambda)=[f(x)]^{\beta}=\bar{f}_{0}+\bar{f}_{1} x+\cdots+\bar{f}_{n} r^{\prime \prime}$, where $\bar{f}_{1}=f_{1}^{\alpha}$, and where β is the extension of α of Theorem 15.1. Then, if θ is a zero of $f(x)$ and $\bar{\theta}$ is a zero of $\bar{f}(x), \alpha$ can be extended to an isomorphism γ of $F(\bar{\theta})$ onto $\bar{F}(\theta) \ni \theta^{\gamma}=\theta$.

Proof: $F(\theta)$ is isomorphic to $F[x] /(f(x))$ and $\bar{F}(\bar{\theta})$ is isomorphic to $\bar{F}[\lambda] /(\bar{f}(\lambda))$. The isomorphism β of Theorem 15.1 thus induces an isomorphism γ between these two quotient rings and clearly if $a \in \Gamma, \bar{a}=a^{a} \in \bar{F}$, then the image under γ of the equiva-
lence class determmed by a is the equivalence class determined by a^{a}

Theoremt is 3 Let $f(x)$ be irreducible in $F[x]$, where F is a field Then
(1) all stem fields of $f(x)$ over F are asomorphie
(2) all spliting fields of $f(x)$ over F are isomorphic

Problem 152 Venfy Theorem 153 for the stem fields in Problems 138 and 1310

Problem 153 Determane which of the fields in Problem 125 are stem fields Why are not all $Q\left(\theta^{\prime}\right)$ nsomorphic?

Problem 154 Prove Theorem 153 by repeated application of Theorem 132

Definition 15 Lei $F L_{1} L_{t}, \mathcal{A}$ be fields $\ni F \subset L_{1} \subset K$ and $F \subset L_{1} \subset \AA$ Then L_{1} and L_{2} are corpugate subfields of K over $F \Leftrightarrow \exists$ an automorphism α of $K \ni$ (1) $L_{1}{ }^{a}-L_{2}$ and (2) $x^{a}=x$ $\forall x \in F$

Problem 155 Let $f(r)$ be irreducible in $F[x]$ and K the splitting field of $f(x)$ over F Prove that the stem fields of $f(x)$ over F are conjugate subfields of \AA over F

Chapter 6: Fields

The simplest fields which we have considered are the field of rational numbers and the fields consisting of the residue classes modulo p, where p is a prime. It is proved in Section 1 that every field has a subfield isomorphic to exactly one of these. So in many discussions it is necessary to bear this in mind and to distinguish between them. We do so.

Approximately the first two thirds of the chapter is devoted to introducing concepts about fields, to proving results involving them, and to proving the fundamental results of the Galois Theory of Fields.

The last third of the chapter is devoted to the Galois Theory of Equatıons and to a consideration of the possibility of finding a general formula for the roots of an equation of degree n in terms of the coefficients and addition, subtraction, multiplication, division, and the extraction of roots.

1. PRIME FIELDS

In Chapter 4, the characteristic of a ring was defined. We now prove a result about the characteristic of any integral domain and so of any field.

Theorem 1.1. An integral domain I has characteristic $p>0$ $\Rightarrow p$ is a prime in Z.

Proof: Suppose that p is not a prime. Then $p=m \cdot n$, where $m>1, n>1$. Then by the definition of characteristic and by Problem 1.12 of Chapter $4, m \cdot 1 \neq 0, n \cdot 1 \neq 0$, but $(m \cdot 1)(n \cdot 1)=p \cdot 1$ $=0$ and so \exists divisors of zero. This is impossible. Therefore, p is prime.

Corollary 1.1. The characteristic of a division ring is either zero or a rational prime.

Definition 1.1. The smallest subfield of a field F is called the prime subfield of F. A field which has no proper subfields is called a prime field.

Theorem 12 A field F has exacily one prime subfield
$P_{\text {roof }}$ The common part of ill subfiedds of F is a subfield of F with the desired pronerties

The next two theorems characterize completely prime subfields and prime fields

Thearem 13 If a feld f has characterstic zero uts prime subfield is isomorphic to Q the field of rational numbers

Proof Now $1 \in F$ and so do $n|(-n)|(m-n) 1$ Ym $n \in \angle$ Therefore F contans a subring I generated by 1 and isomorphic to Z Therefore since F is a fietd it must contan the field of quotients of 1 say II which is isomorphte to Q

Corol tary il A prime field of characteristic zero is isomor phic to 0

Theoremid If a field Γ has characterstic $\rho>0$ its prime subfield II is isomorphic to $Z_{p}-Z /(\rho)$

Proof Now $1 \in 11$ and sode0 1 : 2 1 $(p-1) 1$ and since $(m \mathrm{I})\langle n \mathrm{I})=r \quad \mathrm{I}$ where $m=r \bmod p \quad 0 \leqslant r<p$ these p elemenis form a ning isomorphic to Z_{p} which is a field

Corollary il 3 A prime field of charactenstic $p>0$ is iso morphic to Z_{p},

Proslem 11 Find the prome subfields of all fields so far considered

Problem I 2 Prove that if F is a field of characteristic $p>0$ then $\forall a b \in F$ and $\forall f \in Z=(a)(a+b)^{n}-a^{\prime \prime}+b^{n} \quad$ (b) $(a+b)^{\prime \prime}$ $=a^{p^{5}}+b^{p^{x}}$

Problem 13 Prove that the only automorphsm of a prime field is the identity automorphism

2 CONJUGATE ELEMENTS AND AUTOMORPHISMS OF FiELDS

Definition 21 If K is a field contaning a field F as a sub field then an automorphism α of K is an F aunomorphism of Λ (also called an automorphism of K over $F) \Leftrightarrow \vee j \in F f^{\prime \prime}=f$ if F is a subfield of the fields K and L then an isomorphism α of A onto L is an F isomorphism $\Leftrightarrow \vee \boldsymbol{f} \in \boldsymbol{F} \boldsymbol{f}^{\boldsymbol{a}}=\boldsymbol{f}$

Problem 2.1. Prove that if Π is the prime subfield of a field K, then every automorphism of K is a Π-automorphism.

Problem 2.2. Prove that the isomorphisms between stem fields and splitting fields of Theorem 15.3 of Chapter 5 are F-isomorphisms.

Theorem 2.1. Let F be a subfield of the fields K and L, and α an F-isomorphism of K onto L. Then, if $\theta \in K$ is a zero of $f(x) \in$ $F[\lambda], \theta^{\alpha}$ is a zero of $f(x)$.

Proof: Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. Then $a_{0}+a_{1} \theta+$ $\cdots+a_{n} \theta^{n}=0$ and so $0=0^{\alpha}=\left(a_{0}+a_{1} \theta+\cdots+a_{n} \theta^{n}\right)^{\alpha}=a_{0}{ }^{\alpha}+a_{1}{ }^{\alpha} \theta^{\alpha}$ $+\cdots+a_{n}^{\alpha}\left(\theta^{\alpha}\right)^{n}=a_{0}+a_{1} \theta^{\alpha}+\cdots+a_{n}\left(\theta^{\alpha}\right)^{n}=f\left(\theta^{\alpha}\right)=0$.

Theorem 2.2. If the fields K and L are of finite degree over the field F, if α is an F-isomorphism of K onto L, if $\theta \in K$, and if $\theta^{\prime}=\theta^{\alpha}$, then $\exists f(x) \in F[x]$, where $f(x)$ mreducible in $F[x] \ni f(\theta)=f\left(\theta^{\prime}\right)$ $=0$.

Problem 2.3. Prove Theorem 2.2. (Hint: use Theorem 12.3 of Chapter 5 and Theorem 2.1 immediately above.)

Theorem 2.3. If $f(x) \in F[\lambda]$ is irreducible, F is a field, θ_{1} and θ_{2} are zeros of $f(x)$, and if K is a field containing F, θ_{1}, and θ_{2}, then \exists an F-isomorphism, α, of $F\left(\theta_{1}\right)$ onto $F\left(\theta_{2}\right) \ni \theta_{2}=\theta_{1}{ }^{\alpha}$.

Proof: This is Theorem 15.2 of Chapter 5 for the case $F=\bar{F}$, $f(x)=\bar{f}(x)$ and α, the identity automorphism of F.

Theorem 2.4. Let K be the splitting field of $f(x)$, irreducible, $\in F[\lambda]$, over F, a field, and let θ_{1} and θ_{2} be two zeros of $f(x)$. Then \exists an F-automorphism of K which maps θ_{1} onto θ_{2}.

Problem 2.4. Prove Theorem 2.4 by repeated application of Theorem 15.2 of Chapter 5 (cf. proof of Theorem 15.3 of Chapter 5).

Definition 2.2. Let $a, b \in K$, a field containing the field F as a subfield. Then a, b are conjugates over $F \Leftrightarrow \exists f(x)$, irreducible, $\in F[. a] \ni f(a)=f(b)=0$.

Theorem 2.5. Let F, \bar{F} be two isomorphic fields with isomorphism α. Let $f(x) \in F[\lambda]$ and $\bar{f}(x)=[f(x)]^{\beta}$, where β is the extension of α of Theorem 15.2 of Chapter 5. Finally, let K and \bar{K} be splitting fields of $f(x), \bar{f}(x)$ over F and \bar{F}, respectively. Then α can be extended to an isomorphism of K onto \bar{K} in which each zero of $f(x)$ is mapped onto a zero of $\bar{f}(x)$.

Problcm 25 Prove Theorem 25 by repeated application of Theorem 151 of Chapter 5

Theorem 26 Let $f(x)$ be irreducible in $f[x]$ where F is a field and let h be a splitting field of $f(x)$ over F Then if $a b \in \Lambda$ \exists an F wutomorphusm α of $A ~ \exists a=b^{a} \Leftrightarrow a$ are conjugates over F

Proelifm 26 Use Theorem 26 to find all the automorphisms of the spl tung field of $x^{3}-2 \in \varrho[x]$ Show that they form a group Identufy the group

Problem 27 Prove Theorem 26
Promem 28 Do the same as m Problem 26 for $x^{4}-2 \in$ $Q[x]$

Pronlem ${ }^{7} 9$ Do the same as in Problem 6 for the spliting field of Problem 1'4 of Chapter 5

3 NORMAL EXTENSIONS OF FIELDS AND NORMAL POLYNOMIALS

Definition 31 A field α algebrac over a field $F 15$ iormal o er $F \Leftrightarrow$ whenever $f(x)$ rreducible in $F[x]$ has a zero in K then A contarns the spl turb field of $f(x)$ over F A polynonual $f(x) \in$ $F[x]$ where F is a fieid and $f(x)$ is rreduetble over F is normal over $F \Leftrightarrow V O$ a zero of $f(r) F(\theta)$ is the splitung field of $f(x)$ over F

Problem 31 Show that $x^{2}+3 x+5$ is normil over Q
Problem 32 Show that $a x^{2}+b r+x$ irreducible $\in F[x]$ is normal over F

Problem $\ddagger 3$ Prove that a field K of degree 2 over a field F is normal over F

Problem 34 Show by an exumple that in general a poly normal $f(x)$ normal over a field F must be irreducbble over F

Problem 35 Show that $r^{3}-2$ is not normal over Q and that none of its stem fields is normal over Q

Problem 36 Show that the cyciotomic polynomal $f(x)$ $=\left(x^{2}-1\right) /(x-1)-x^{2}+x^{2}+\quad+x+1$ where p is a rational prime is normal over Q [Hint each zero of $f(x)$ is a p th root of unity $]$

Problem 3.7. Show that the polynomial $x^{p}-t$ is normal over $F=Z_{p}(t)$.

Theorem 3.1. If a field K is normal over a subfield F, then K is normal over every subfield L between K and F (i.e., $K \supset L \supset F$).

Proof: Let $\phi(x)$ be irreducible in $L[x]$, and suppose that $\phi(\theta)=0$, where $\theta \in K$. Then, since K is algebraic over $F, \exists f(x)$ irreducible, $\in F[x] \ni f(\theta)=0$. Then, since K is normal over F, K contains all the zeros of $f(x)$. Since $L \supset F, f(x) \in L[x]$ and $f(x)$ has a zero in common with $\phi(x)$. Therefore, in $K[x], \phi(\lambda)$ and $f(x)$ have a factor $\lambda-\theta$ in common. Hence, in $K[x]$, the g.c.d. of $\phi(x)$ and $f(x)$ has degree $\geqslant 1$. But, the g.c.d. of $f(x)$ and $\phi(x)$ is in $W[x]$, where W is any field containing the coefficients of the two polynomials. Hence, the g.c.d. of $f(x)$ and $\phi(x)$ is in $L[x]$ and is of degree $\geqslant 1$. But $\phi(x)$ is irreducible in $L[x]$. Therefore, $\phi(x) \mid f(x)$. Thus every zero of $\phi(x)$ is a zero of $f(x)$ and since K contains all the zeros of $f(x)$, it contains all the zeros of $\phi(x)$. Hence, K is normal over L.

Theorem 3.2. Let $f(x) \in F[x]$, where F is a field, and let K be the splitting field of $f(x)$ over F. Then K is a normal extension of F.

Proof: Let $\phi(x)$ be rrreducible in $F[x]$ and let θ_{1} be a zero of $\phi(x) \ni \theta_{1} \in K$. We must show that all the zeros of $\phi(x) \in K$. Let K^{\prime} be a splitting field of $\phi(x)$ over K and let θ_{2} be any zero of $\phi(x)$. Then, of course, $\theta_{2} \in K^{\prime}$. Since $\phi(x)$ is irreducible in $F[x]$, by Theorem 2.3, ヨ an F-isomorphism α of $F\left(\theta_{1}\right)$ onto $F\left(\theta_{2}\right)$ which maps θ_{1} onto θ_{2}. Now K and $K\left(\theta_{2}\right)$ are splitting fields of $f(x)$ over $F\left(\theta_{1}\right)$ and $F\left(\theta_{2}\right)$, respectively. Hence, by Theorem 2.5 , the isomorphism α can be extended to an F-isomorphism β of K onto $K\left(\theta_{2}\right)$. Now β is an isomorphism of K into K^{\prime}, a field containing K. Since β is an F-isomorphism and since all the zeros of $f(x)$ are in K, β maps the set of zeros of $f(1)$ onto itself. Therefore, since K is generated by the zeros of $f(x)$, β must be an F-isomorphism of K. Since $\theta_{1} \in K$, then $\theta_{1}{ }^{\beta}=\theta_{2} \in K$. Hence, we have proved that each zero of $\phi(x)$ is in K , as long as one zero is in K. Therefore, K is a normal extension of F.

Theorem 3.3. If K is a finite normal extension of a field F, then K is the splitting field of some $f(x) \in F[\lambda]$.

Problem 3.8. Prove Theorem 3.3. (Hint: consider a basis of K over F.)

Problem 3.9. Prove that if $f(x)$ is normal over F, and if θ is a zero of $f(x)$, then $F(\theta)$ is normal over F.

Pronlev 3 10 Prove thit the following is false if a field K is normat over 7 field F and if L is a subfield of f, then K is normal over L

4 SEPARABILITY

Definitiov 4 : Λ polynomat $\phi(x) \in F[x]$, where F is a field is sepmrable oref $F \Leftrightarrow \Phi(x)$ has no mulsuple zeros on any exten sion ficld of F

An element $a \in \mathrm{~A}$ a field contaming f as a subfield is separable oucr $f \Leftrightarrow a$ is a zero of 1 polynomal $f(x) \in F[x]$ where $f(x)$ is separable over F

A field K contanng Γ as a sublield is separable over $F \Leftrightarrow$ every element of h is separable over Γ

Otherwise the polynomal element or field is called inseparable over F

Theorem 41 Let $f(x)$ be an irreducible polynomial of $F[x]$ where F is a field
(1) If the characteristic of F is zero then $f(x)$ is separable over F
(2) If the chardetenstic of F is $p>0$ then $f(x)$ is inseparable over $F \Leftrightarrow f(x)=\sum_{1,0}^{A} c_{1}\left(x^{2}\right)^{4}$ where $d_{1} \in F$

Proof First we show that if $f(x)$ is inseparable its derivative $f(x)$ is zero By Theorem 27 of Chapter 5 if $f(x)$ has a zero of multu plecty greater than 1 then $x-a|f(x) \Rightarrow f(a)-0 \Rightarrow f(x)| f(x)$ since $f(x)$ is ureducible in $F[x] f(x) \in F[x]$ and x a is a common divisor of both $f(x)$ ind $f(r)$ But this is impossible unless $\int(x)=0$ sunce deg $f(x)<\operatorname{deg} f(x)$ or $f(r)=0$ Therefore $f(x)=0$

Now let $f(x)=\sum_{i=1}^{k} a_{i} x^{4}$ with $a_{n} \neq 0$ Then $f(x)-\sum_{i=0}^{n} u_{i} x^{x^{1}}$ If $f(x)=0$ then we must have $a_{4}=0$ for $-01 \quad n$ Since $a \neq 0$ white $n a_{n}=0$ the characterstic of F must be a pnome dividing n so the first statement of the theorem is proved Now from $m=0$ for $t=01 \quad n-1$ we see that $a_{\mathrm{f}}-0$ if,$\neq 0 \bmod p$ Therefore the only nonzero coefficients of $f(x)$ are a_{1} where $1=0 \bmod p$ and of course some of these may be zero Therefore $f(x)=\Sigma_{j \neq 0}^{k} a_{j p} x^{j p}=$ $\Sigma^{h}{ }_{* 0} c_{1}\left(x^{p}\right)^{\prime}$ where $k=n / p$ and $c_{1}=a_{i p}$

Now let $f(x)=\Sigma_{i=0}^{k} c_{i}\left(x^{\nu}\right)$ and $g(x)=\Sigma_{i}^{k} c_{0} x$ Then $f(x)$ $=g\left(x^{y}\right)$ Now $g(x)$ may be a polynomal in x^{y} if it is then $f(x)$ is a polynomal in $x^{x^{2}}$ and so on Suppose finally the $f(x)$ is a polynomal in $x^{0^{\circ}}$ but not in $x^{p^{e+2}}$ Then $f(x)=h\left(x^{*}\right)$ and $h(y)$ is itreducible in $F[y]$ since $f(x)$ is irredueible in $\boldsymbol{F}[x]$ Further $h(y)$ has no muluple zeros since if $h(3)=0$ then by the above $h(g)$ would be a poly
nomial in y^{p} and so $f(x)$ a polynomial in $x^{p^{e+1}}$. In a splitting field of $h(y), h(y)=\left(y-a_{1}\right)\left(y-a_{2}\right) \cdots\left(y-a_{r}\right)$, where the $a_{1}, a_{2}, \ldots, a_{r}$ are distinct. Let, in some further extension field, b_{1} be a zero of $x^{p}-a_{2}$ for $i=1,2, \ldots, r$. Then $b_{2}^{p^{e}}=a_{t}, \lambda^{p^{e}}-a_{i}=x^{p^{p}}-b_{1}{ }^{p^{e}}=\left(x-b_{i}\right)^{p^{e}}$ and so, since the b_{2} are distinct because the a_{2} are, $f(x)$ is an inseparable polynomial and each of its zeros has the same multiplicity.

Corollary 4.1. The zeros of an irreducible inseparable polynomial $f(x) \in F[x]$ are all of the same multiplicity.

Definition 4.2. If $f(x)$ of degree n is an irreducible, inseparable polynomial $\in F[x]$, where F is a field, and if $f(x)=h\left(x^{p^{e}}\right)$, where $h(y) \in F[y]$, while $\nexists h(y) \in F[y] \ni f(x)=k\left(x^{p^{p+1}}\right)$, then $n_{0}=n / p$ is called the reduced degree of $f(x)$.

Problem 4.1. Show that the polynomial of Problem 3.7 is inseparable. Factor it and find its reduced degree.

Problem 4.2. Find an inseparable polynomial of reduced degree 5.

Theorem 4.2. K is a separable algebraic extension of a field F, L is a field between K and $F \Rightarrow K$ is separable over L.

Theorem 4.3. Let K be a finite normal extension of a field F, and θ_{1} and θ_{2} be two elements of K which are conjugate over F. Then \exists an F-automorphism of K which maps θ_{1} onto θ_{2}.

Proof: By Theorem 3.3, K is a splitting field over F of some polynomial $f(x) \in F[x]$. Then θ_{1} and θ_{2} are zeros of some irreducible polynomial, $g(x), \in F[x]$. Then by Theorem 15.3 (a) of Chapter 5 , \exists an F-isomorphism α of $F\left(\theta_{1}\right)$ onto $F\left(\theta_{2}\right) \ni \theta_{1}{ }^{\alpha}=\theta_{2}$. Since K is the splitting field of $f(x)$ over $F\left(\theta_{1}\right)$ and K is also the splitting field of $f(x)$ over $F\left(\theta_{2}\right)$, the isomorphism α can, by Theorem 2.5 , be extended to an F-automorphism of K.

Theorem 4.4. Let K be a finite, normal, separable extension of a field F. If an element $\theta \in K$ is mapped onto itself by all F-automorphisms of K, then $\theta \in F$.

Proof: Under the given conditions, by Theorem 4.3, θ must coincide with all its conjugates. Thus its minimum polynomial $f(x)$ $\in F[1]$ would factor in K as $f(x)=(x-\theta)^{m}$. But this would mean, unless $m=1$, that $f(x)$ irreducible in $F[x]$ would have a multiple zero and, by hypothesis, θ was separable. Therefore, $m=1$ and so $\theta \in F$.

Problem 43 Prove Theorem 42

Problem 44 Show by an example the necessity of separability in Theorem 44 (Hint ef Problems 37 and 4 1)

Problem 45 Determan whether the following is true L is normal over $\boldsymbol{K} K$ is normal over $F \Rightarrow L$ is normal over F

5 SUBFIELDS AND AUTOMORPHISMS

In this section we consuder the relations between subfields of a field \AA and subgroups of the groups of automorphisms of K First of course we must prove that the automorphisms do form i group

Theorent $S 1$ The set Ω of automorphosms of a field F and the law of composition of Defimtion 2 ! of Chapter 2 form a group

Proof Since 5 is a subset of the group of Theorem 7 i of Chapter 2 and the law of eomposition is the same we know that the associative law holds Let $a \beta \in \Omega$ Then $\forall a b \in F(a+b)^{a s}$ $=\left[(a+b)^{a}\right]^{a}-\left[a^{n}+b^{c}\right]^{0}=\left(a^{n}\right)^{a}+\left(b^{n}\right)^{s}-a^{n}+b^{a n}$ by the prop erties of automorphisms and the defination of the product of two mappings Similurly $(a b)^{a d}-a^{a n} b^{n a}$ Therefore Ω is closed The identity mapping is obviously an automorphism of F and clearly is the neutral element of Ω Now for $\beta \in \Omega a b \in F$ let $x-a^{a}$ $s^{=}=b^{3}$ ' Then $[a+b]^{\prime}=\left[x^{2}+y^{s}\right]^{a}-\left\{(x+y)^{a}\right\}^{a}-x+y-a^{A}$ $+b^{\prime \prime}$ Similarly $(a b)^{\prime}=a^{\prime \prime} b^{\prime \prime}$ Hence β^{\prime} as the mapping inverse to β is in Ω Hence each element of Ω has an inverse There fore Ω is a group

Theorem 52 Let F be a subfield of the field K Then the F automorphisms of K form a subgroup Δ of the group Ω of all automorphisms of A

Proof We shall use Theorem 81 of Chapter 3 Let $\alpha \beta$ be F automorphusms of K Then $\vee f \in f f^{\circ}=f f^{M}-f f^{a}-f$ There fore $f^{\text {ua }}=(f)^{1}=f^{1}=f$ Therefore a $\beta^{1} \in \Delta$ Therefore Δ is a subgroup of Ω

Theorem 53 Let M be any subset of a field K The set of all automorphisms ξ of $\boldsymbol{h} \exists \boldsymbol{\exists} \boldsymbol{m} \in M m^{E}-m$ form a group

Problem 51 Prove Theorem 53
Problem 52 Generahze Theorem 53 to F automorphisms of K where F is any subfield of K

Problem 5.3. For $K=Q(\omega, \theta)$ of Problem 13.6 of Chapter 5, (a) find all subfields of K (there are four besides K and its prime subfield), (b) for each subfield (use all six) F of K, find all the F-automorphisms of K.

Problem 5.4. Do the same as in Problem 5.3 for the splitting field of $x^{4}-2$.

Theorem 5.4. Let Λ be any set of automorphisms of a field K. Then the set L of all elements $x \in K \ni \forall \lambda \in \Lambda, x^{\lambda}=x$, is a subfield of K.

Proof: Let $\alpha \in \Lambda$ and let L_{α} be the set of all $x \in K \ni \lambda^{\alpha}=x$. Further, let $a, b \in L_{\alpha}$. Then $a^{\alpha}=a, b^{\alpha}=b$. So $(-b)^{\alpha}=-b$, since $[b+(-b)]^{\alpha}=0=b^{\alpha}+(-b)^{\alpha}=b+(-b)$ and $b^{\alpha}=b$. Finally, since α is an automorphism of $K,(a-b)^{\alpha}=[a+(-b)]^{\alpha}=a^{\alpha}+(-b)^{\alpha}$ $=a-b$. Therefore, by Theorem 8.1 of Chapter $3, L_{\alpha}$ is a subgroup of the additive group of K.

If $b \neq 0, b^{-1} \in K$, and from $b b^{-1}=1$, we have $1=1^{\alpha}=\left(b b^{-1}\right)^{\alpha}$ $=b^{\alpha}\left(b^{-1}\right)^{\alpha}=b\left(b^{-1}\right)^{\alpha} \Rightarrow\left(b^{-1}\right)^{\alpha}=b^{-1}$, since the multiplicative inverse of b is unique. Therefore, $\left(a b^{-1}\right)^{\alpha}=a b^{-1}$, and so, the nonzero elements of L_{α} form a subgroup of the multiplicative group of K. Therefore, L_{α} is a subfield of K.

Problem 5.5. For each subgroup Λ of the group of automorphisms of the field of Problem 5.3, find the subfield whose existence is given by Theorem 5.4.

Problem 5.6. Same as Problem 5.5 for the field of Problem 5.4.
Definition 5.1. Let K be a field and Γ its group of automorphisms.

If Λ is a subgroup of $\Gamma, N(\Lambda)$ is the subfield of K determined in Theorem 5.4 and is called the subfield belonging to Λ.

If L is a subfield of $K, \Omega(L)$ is the subgroup of Γ determined in Theorem 5.3 and is called the subgroup belonging to L.

The above may also be considered for Γ as the group of F-automorphisms of K, where F is a subfield of K.

Problem 5.7. Apply the terminology of Definition 5.1 to the results of Problems 5.3, 5.4, 5.5, and 5.6.

Problem 5.8. Do Problems 5.3 and 5.5 for the smallest field containing the splitting fields of $x^{2}-2$ and $x^{3}-t$ as elements of $Z_{3}(t)[x]$.

Theorem 55 Let K be a field and Γ its group of automor phisms For any subgroup A of $\mathbf{1} \boldsymbol{\Omega}(\mathbf{N}(1)) \beth$ ind for any sub field L of $\mathrm{K} N(\Omega(L)) \quad \partial L$

Thforem 56 Let k be 9 field and Γ its group of automor phisms If $\Lambda_{1} 1_{z}$ are subgroups of $\Gamma \ni \wedge \subset \Lambda_{2}$ then $N\left(\Lambda_{2}\right)$ כ $N\left(\mathrm{t}_{2}\right)$ if $L_{1} L_{2}$ are subfields of $\Lambda \ni \boldsymbol{L}_{1} \subset L_{2}$ then $\Omega\left(L_{1}\right) \supset \Omega\left(L_{2}\right)$

Problen 59 Prove Theorem 55
Problem 910 Prove Theorem 56
Problim 5 II Give an example in which the striet inclusion is necessiry in the second concluston of Theorem 55 (Hint use Problem 37)

6 ROOTS OF UNITY

Definition 61 Let ll be a prime field and n ipositive rational integer not divisible by the charistenstuc of if if the characteristic of f is zero nmy m be any postive rational integer Then an nth root of untry is any zero of $f(x)-x^{*}-1$ in any extension field of 11 The splitung field of this $f(t)$ is called the field of the nth roots of un ty over the prime fiekd II and is also called the cychotomu field of order in

Theorem 61 In the field of the ath roots of unity there are exastly n dist net nth roots of umty ind they form a multiplicative syclic group

Proor By Corollary $\boldsymbol{>} \mathbf{2}$ in Chapter $\left\{\right.$ the zeros of $f(x)-x^{n}$
1 are distunct sance $f(x)-n x \neq 0$ sance p / n where p is the charactenstic of if if a is not zero Therefore there are a distunct n hh roots of un ty

Let α and β be two such ie $\alpha \quad 1 \beta-1$ then $(\alpha / \beta)^{n}=1$ and so the nth roots of umity form a multiplicative group G

Let $\|-1 \mathrm{I}^{\prime \prime} \quad p \quad$ where the p are distinct primes $1=12$ m In G there are at most n / p elements $\exists a *-1$ since the poly nomal $x^{\prime \prime} p-1$ his it most n / p zeros Therefore $V_{t}<m$ ヨi \in $G \ni a^{\prime \prime} \neq 1$ Let $b-a{ }^{p} \quad$ Then b has period p for sunce $1-1$ ita period must he a factor of β But $b \quad-\left(a^{* *}\right)^{p}$ ' $-a^{\infty \rho} \neq\left\{\right.$ Thus the product $\zeta-\Pi_{i}=b$ has period $\Pi^{*{ }^{*}}, p_{1}^{r}-n$ Therefore ζ benerates G und so G is cycl c

Definition 62 A generator of the cycic group of the the roots of unty is called a primutive nth root of anily

Corollary 6.1. $\exists \phi(n)$ primitive nth roots of unity.
Definition 6.3. The polynomial $\Phi_{n}(x)=\left(x-\zeta_{1}\right)\left(x-\zeta_{2}\right)$ $\cdots\left(x-\zeta_{\text {onn }}\right)$, having as its zeros the primitive nth roots of unity is called the cyclotomic polynomial of order n.

Theorem 6.2. $\quad \lambda^{n}-1=\Pi_{d \mid n} \Phi_{d}(\lambda)$.
Proof: Each nth root of unity is a primitive d th root of unity for exactly one divisor d of n. Therefore, it occurs as a zero of exactly one $\Phi_{d}(x)$ on the right, and it of course occurs in exactly one factor (linear) of $x^{n}-1$.

Problem 6.1. Find $\Phi_{2}(x), \Phi_{4}(x), \Phi_{8}(x), \Phi_{3}(x), \Phi_{6}(x)$.
Problem 6.2. Prove that if ζ is an nth root of unity, $1+\zeta+\zeta^{2}$ $+\cdots+\zeta^{n-1}=n$ if $\zeta=1$ and 0 if $\zeta \neq 1$.

Problem 6.3. Prove that if n is odd, the field of the nth roots of unity is the field of the $(2 n)$ th roots of unity.

Problem 6.4. Prove that $\Phi_{n}(x)$ is normal over the prime field Π (cf. Problem 3.6).

7. FINITE FIELDS

Definition 7.1. A finite field is a field containing only a finite number of distinct elements. Such a field is often called a Galois Field and is usually denoted by $\operatorname{GF}\left(p^{n}\right)$ where p^{n} is the number of elements in it (cf. Theorem 7.1 below). The order of a finite field is the number of elements in it.

Theorem 7.1. The number of elements in a finite field F is p^{n}, where p is the characteristic of F and $n \in Z^{\lambda}$.

Proof: Obviously by Theorem 1.3, the characteristic of F cannot be zero and so by Theorem 1.1 must be a positive rational prime p.

Let Π be the prime subfield of F. Then F is a vector space over II, and, if the number of elements in F is q, then there are at most q linearly independent elements in F. Let n be the number of elements in a maximum set of linearly independent elements, and let a_{1}, a_{2}, \ldots, a_{n} be such a set. Then $a_{1}, a_{2}, \ldots, a_{n}$ form a basis of F over Π, so every element of F can be expressed uniquely in the form $c_{1} a_{1}$ $+\cdots+c_{n} a_{n}$, where the $c_{1} \in \Pi$. These elements are all distinct, by the uniqueness property of a basis. There are exactly p^{n} of them, since
c_{1} can be any of the p elements of Π Therefore F conims exactly p elements

Theorem 72 If F is a finte field of order p^{n} then every ele ment of F is a zero of $x^{p^{\prime \prime}}-x$

Proof The nonzero elements of \boldsymbol{F} form a multiplicative group which is of order $p^{n}-1$ and so each element satusfies $x^{p^{n}} 1-1=0$ Therefore every element of F including zero is a zero of $x^{\nu^{n}}-x$ -

Theorem 73 If F is a finte field of order $p^{\prime \prime}$ then the multi plicative group of F consists of the ($p^{\prime \prime}-1$)th roots of unity over the prime field of characterstic p

Proof $p i p-1$ and by Theorem 72 every nonzero clement of F satısfies $x^{s^{\prime \prime}} 1-1-0$

Corollary 71 Two finite fields of order $p^{\prime \prime}$ are isomotph c
Corollary 72 The multipicative group of $\mathrm{GF}\left(p^{*}\right)$ is cyel c
Theorent 74 For eich positive rational prime p and ech $n \in Z^{*} 7$ a finte field $G \Gamma(p)$

Corollary 73 Let II-GF(p) und $n \in Z^{*} \quad \exists f(x) \in$ $H[x] \ni$
(I) $\operatorname{deg} f(x)-1$
(2) $f(x)$ is irreducible in $11[r]$

Problem 7 I Prove Theorem 74 (Hint let K be the sphiting field of $x^{\prime \prime \prime} \quad x$ over 11 By using problem I 2 show that the zeros of this polynomial form a field which must be A)

Problem 72 Prove the three corollaries above
Problem 7 7 Prove let $[\mathrm{GF}(p)$ and let $f(x) \in \Pi[x]$ Then $[f(x)]^{m}-f\left(x^{\nu m}\right) \forall u \in Z^{*}$

Definition $72 \quad \theta \in \mathrm{~A} \supset \mathrm{~F}$ is a pronutice element of the field $K o$ er the field $F \Leftrightarrow K-F(\theta)$

Theorem 75 GF $\left(p^{n}\right)$ is a simple extension of II us prime field (which is GF(p))

Proof Since by Corollary 7 7 the multiplicative group of GF $\left(p^{n}\right)$ is cyche \exists a generator θ for it Then $\operatorname{GF}\left(p^{n}\right)-\Pi(\theta)$

Theorem 76 The mapping $\boldsymbol{a}_{\mathrm{m}}$ defined by $\boldsymbol{x}^{n \prime}-x^{\nu^{m}}$ is an automorphism of GF $\left(p^{\prime \prime}\right)$ and these n mutomorphisms are distinct

Problem 7.4. Prove Theorem 7.6.

8. PRIMITIVE ELEMENTS

Theorem 8.1. (The Primitive Element Theorem.)
(1) $\rho, \sigma \in K$, a field containing the field F as a subfield,
(2) ρ, σ are algebraic over F,
(3) σ is separable over $F \Rightarrow \exists \theta \in K \exists F(\theta)=F(\rho, \sigma)$.

Proof: Let $f(\lambda), g(x)$ be the minimum polynomials of ρ, σ, respectively, over F and let $\rho=\rho_{1}, \rho_{2}, \ldots, \rho_{r}$ and $\sigma=\sigma_{1}, \sigma_{2}, \ldots$, σ_{s} be the distinct zeros of $f(x)$ and $g(x)$, respectively.

Since, if F is a finite field, so is $F(\rho, \sigma)$ and Theorem 7.5 covers this case, we may suppose that F has infinitely many elements.

Since the σ_{h} are all distinct, the equation $\rho_{1}+x \sigma_{h}=\rho_{1}+x \sigma_{1}$, $h \neq 1$, has at most one root in F for each i, k, namely, $\left(\rho_{1}-\rho_{1}\right) /$ $\left(\sigma_{1}-\sigma_{h}\right)$, if this element $\in F$. There are thus at most $r(s-1)$ elements which can be roots of these $r(s-1)$ equations. Let c be any other element of F. Then we have $\rho_{1}+c \sigma_{h} \neq \rho_{1}+c \sigma_{1}$ for all l and for all $k \neq 1$. Let $\theta=\rho_{1}+c \sigma_{1}=\rho+c \sigma$. Then $\theta \in F(\rho, \sigma)$ and so $F(\theta) \subset F(\rho, \sigma)$.

We shall now prove that $\rho \in F(\theta), \sigma \in F(\theta)$, and so $F(\rho, \sigma)$ $\subset F(\theta)$. Then we can conclude that $F(\theta)=F(\rho, \sigma)$.

Now σ is a zero of $g(x)$ and $f(\theta-c x)$, since $f(\theta-c \sigma)=f(\rho)$ $=0$, and these two polynomials, $g(x), f(\theta-c x) \in F(\theta)[x]$. Furthermore, the only zero which $g(x)$ and $f(\theta-c x)$ have in common is σ, since for the other zeroes $\sigma_{2}, \ldots, \sigma_{s}$ of $g(\lambda)$ we have $\theta-c \sigma_{k}$ $\neq \rho_{i} ; i=1, \ldots, r ; h=2,3, \ldots, s$, and so $f\left(\theta-c \sigma_{h}\right) \neq 0$ for $k=2,3$, \ldots, s. Therefore, a g.c.d. of $g(x)$ and $f(\theta-c x)$ is $x-\sigma$ and this must belong to $F(\theta)[x]$, since $f(\theta-c x)$ and $g(x) \in F(\theta)[x]$. Therefore, $\sigma \in F(\theta)$. Since $\rho=\theta-c \sigma, c \in F$, then $\rho \in F(\theta)$.

Corollary 8.1. If $\tau_{1}, \tau_{2}, \ldots, \tau_{m}$ are algebraic over F, and $\tau_{2}, \ldots, \tau_{m}$ are separable over F, then $\exists \theta \in F\left(\tau_{1}, \ldots, \tau_{m}\right) \ni F(\theta)$ $=F\left(\tau_{1}, \ldots, \tau_{m}\right)$.

Corollary 8.2. $\quad \theta \in K \supset F$ is a primitive separable element of K over F, where $[K: F]=n \Leftrightarrow$ the degree of the minimum polynomial of θ is $n \Leftrightarrow \theta$ has n distinct conjugates over F.

Problem 8.1. Prove Corollaries 8.1 and 8.2.
Problem 8.2. State carefully where, in the proof of Theorem 8.1, the separability of σ was used.

Problem 83 Use the method of the proof of Theorem 81 to find promutive elements for each of the following fields (in each case over the prime field) (q) $Q(\sqrt{2} \sqrt{3})$ (b) $Q(\sqrt{3}$ 1) (c) $Q(\sqrt[3]{2}$ i) (d) $Q(\sqrt[3]{2}$ 1) Prove in each case that the element found is a primitive element

Derinition 81 If θ is 1 primitive element of the field K over the field F then a polynomial $p(x)$ irreducible in $F[x]$ and $\ni p(\theta)-0$ is called a Galos resoh ent of α over Γ If K is the splitting field of $f(x) \in F[x]$ over $F p(x)$ is also called the Galois resolvent of $f(x)$

Probiem 84 Find G ilois resolvents for each of the fields of Problem 83

Theorem 82 Let $F-F(\theta)$ be normal over F and $f(x)$ of degree s be the minimum polynomial of θ over F Then 3 exactly n F automorphisms of λ if θ is sep isable over F and n_{0} where n_{0} is the reduced degree of $f(x) \Gamma$ automorphisms of K if θ is inseparable over F

Proor Since K is normat over F A contans all the conjugates over F of θ and these are the zeros of $f(x)$ Since $\lambda-F(\theta)$ any Γ automorphism of K is uniquely determined by specifying the image of θ By Theorem 260 must be mapped onto one of ats n (or n_{0}) conjugates Therefore 7 at most n (or $\left.n_{\theta}\right) F$ automorphasms But the n (or n_{0}) conjugates dre disunct and so agaun by Theorem 26 for each conjugate \exists an F эutomorphism of \AA Therefore $\mathbf{3}$ at lenst n (or n_{0}) F automorphisms Therefore exactly n (or n_{0})

Corollary 83 If \AA is the spliting field of $f(x) \in F[x]$ over F where $f(x)$ is separable and irreducible in $F[x] \exists$ exactly $F F$ duto morphisms of A where $n=\left[\begin{array}{ll}K & 1\end{array}\right]$

Corollary 84 If K is a finute notmal separable extension of F of degree n over $F \exists$ exacily $n F$ automorphisms of k

Problem 8 \& Prove the Corollaties 83 and 84

9 THE GALOIS THEORY OF FIELDS

Definition 91 A field K is a Galozs extension of a subfield $F \Leftrightarrow K$ is finte normal separable over F

We shall often say bnefly that K is Galos over F if and only if A is a Galois extension of F

Definition 9.2. If K is Galois over F, the group of F-automorphisms of K is called the Galois group of K over F. If $f(x)$ is a separable polynomial of $F[x], K$ its splitting field, then the Galois group of K over F is called the Galois group of the polynomial $f(x)$ [or of the equation $f(x)=0]$.

Theorem 9.1. If K is Galois over F, and L a subfield of K containing F, then $N(\Omega(L))=L$.

Proof: (cf. Theorem 5.5.) By Theorem 3.1, K is normal over L, and by Theorem 4.2, K is separable over L, and so K is Galois over L. We can, therefore, apply Theorem 4.4 with the F of that theorem replaced by our present L.

Theorem 9.2. If K is Galois over F, Γ, it is Galois group over F, and Λ any subgroup of Γ, then $\Omega(N(\Lambda))=\Lambda$.

Proof: By Theorem 5.5, $\Omega(N(\Lambda)) \supset \Lambda$, so if $\Omega(N(\Lambda)) \neq \Lambda$, then \exists at least one $\omega \in F \ni \forall x \in N(\Lambda), x^{\omega}=x$, while $\omega \notin \Lambda$. This means, i.e., if $\omega \notin \Lambda$, there must exist some element $a \in K$ $\ni a^{\omega}=a$ while for at least one $\lambda_{0} \in \Lambda, a^{\lambda_{0}} \neq a$. Then $a \notin N(\Lambda)$, while $a \in N(\Omega(N(\Lambda)))$. But, by Theorem 9.1, $N(\Omega(N(\Lambda)))=N$. (1). Therefore, no such ω exists and so $\Omega(N(\Lambda))=\Lambda$.

Theorem 9.3. If K is Galois over F, Γ the Galois group of K over F, if the subfield $L \supset F$ belongs to the subgroup, Λ, then the order of Λ is equal to the degree of K over L, and the index of Λ in Γ is equal to the degree of L over F.

Problem 9.1. Prove Theorem 9.3.

Problem 9.2. Verify Theorems 9.1, 9.2, and 9.3 for the splitting fields of $x^{3}-2$ and $x^{4}-2$.

Theorem 9.4. Let K be Galois over F. Then two subfields L_{1}, L_{2} of K, each containing F, are conjugates over $F \Leftrightarrow \Omega\left(L_{1}\right), \Omega\left(L_{2}\right)$ are conjugate subgroups of Γ, the Galois group of K over F.

Proof: Let $\Lambda_{1}=\Omega\left(L_{1}\right), \Lambda_{2}=\Omega\left(L_{2}\right)$.
Consider the implication \Rightarrow. By hypothesis, $\exists \alpha \in \Gamma \ni L_{1}{ }^{\alpha}=L_{2}$. Let $\lambda \in \Lambda_{1}$. Then $\forall \lambda \in L_{1}, x^{\lambda}=x$. Let $y_{1} \in L_{2}$, and $y_{1}{ }^{\alpha^{-1}}=x_{1} \in L_{1}$. Then we have $y_{1}^{{ }^{-1} \lambda \alpha}=x_{1}{ }^{\lambda \alpha}=\left(x_{1}{ }^{\lambda}\right)^{\alpha}=x_{1}^{\alpha}=y_{1} \Rightarrow \alpha^{-1} \lambda \alpha \in \Lambda_{2}, \quad \forall \lambda$ $\in \Lambda_{1}$. Similarly, $\forall \lambda^{\prime} \in \Lambda_{2}, \alpha \lambda^{\prime} \alpha^{-1} \in \Lambda_{1}$. Therefore, $\alpha^{-1} \Lambda_{1} \alpha=\Lambda_{2}$.

Now consider the implication \Leftarrow. By hypothesis, $\exists \alpha \in \Gamma \ni \alpha^{-1}$ $\Lambda_{1}=\Lambda_{2}$. Now α maps L_{1} onto some conjugate subfield \bar{L}. Let $\bar{y} \in \bar{L}$
and $r_{1}=y^{a^{-1}}$ Then $\forall \lambda \in A_{1}, y^{-j_{A a}}=x_{1}{ }^{k a}=x_{1}{ }^{\mathrm{c}}=3$ Therefore, $L_{i}=N\left(\Lambda_{i}\right) \supset \bar{L}$ Therefore $L_{2^{\mathbf{n}^{-1}}} \supset \bar{L}^{\mathbf{a}^{-1}}$ But, since A_{1} and Λ_{2} are conjugate, they have the same order Therefore, by Theorem 93 , $L_{2}{ }^{{ }^{-1}}=L_{1}, L_{1}{ }^{n}=L_{\text {. }}$. Therefore. L_{1} and L_{2} are eonjugate

Theorem $95 \quad$ Let α be Galos over F A subfield L of K is normal over $F \Leftrightarrow l$ coineides with its conjugate subfields under all F dutomorphisms of κ

Problem 93 Prove Theorem 95 (Hint use Theorem 26 and the pertinent defintions)

Tiferemi 96 Let α be Galois over F A subfield L of α is normal over $F \Leftrightarrow \Omega(L)$ is a normal subgroup of I the Galoss group of α over F A subgroup $\{$ of Γ is normal $\Leftrightarrow N(\Lambda)$ is normal over F

Proalem 94 Prove Theorem 96 using Theorems 94 and 95
Problech 95 Prove Theorem 96 by using the methad of the proof of 'Theorem 94

Problcat 96 Examine the spitung fietes of $r^{1}-2$ and $x^{4}-2$ un light of Theorems 93456

Theorem 97 Let K be Galots over f Let L be a subfield of h normal over F and let $1=\Omega(L)$ Then the Galois group of L over F is isomorphre to $\Gamma / 1$ where I is the G iots group of A over F I is the Galois group of A over L

Problem 97 Prove Theorem 97
Problem 98 Apply Theorem 97 to the spliting fieids of $x^{1}-2$ and $r^{4}-2$

10 THE CYCLOTONIC F゙IELD

The cyclotomic field of order n was dehmed earlier for a prime field $I I$ We now generalize that

Definition 101 The field C_{n} is called the eyclotomic exten sion field of order n over the field $F \Leftrightarrow C_{n}$ is the smallest field con taining F and all the nth roots of unity

We shall throughout the rest of this chapter assume that the characteristic of F does not divide n

Theorem $101 \quad C_{n}$ exists for each field F and is a finte normal and separable extension of F Further the Gators group of C_{n} over F
is isomorphic to the multiplicative group of the reduced residue classes modulo n.

Proof: We leave the proof of the first statement of the theorem to the reader as an exercise.

The primitive elements of C_{n} over F are the powers, ζ^{h}, where ζ is a primitive nth root of unity and $k \in Z^{*} \ni(k, n)=1$, and so $C_{n}=F\left(\zeta^{h}\right),(k, n)=1$. Thus we can determine each F-automorphism of $K=F(\zeta)$ by determining the image of ζ, which must be a primitive nth root of unity so we have a $1-1$ mapping of the F-automorphisms onto the reduced residue classes modulo n. Further, if we let α_{h} be the F-automorphism $\zeta \Leftrightarrow \zeta^{h}$, for $(k, n)=1$, we have $\alpha_{k} \alpha_{n}$ determined by $\zeta \Leftrightarrow\left(\zeta^{h}\right)^{h}=\zeta^{h h}$, where $(h, n)=1$, and if we let $k h \equiv w \bmod n$, then $(w, n)=1$, and $\zeta^{h h}=\zeta^{w}$, and so we have the desired automorphism.

Corollary 10.1. The Galois group of C_{n} over F is the direct product of cyclic groups.

Definition 10.2. The field K, Galois over the field F, is called cyclic over $F \Leftrightarrow$ the Galois group of K over F is cyclic. In accordance with Definition 9.1, we call a polynomial or an equation cyclic \Leftrightarrow its Galois group is cyclic.

Corollary 10.2. If p is a positive rational prime and F is a field of characteristic different from p, then C_{p} over F is cyclic over F and $\left[C_{p}: F\right] \mid p-1$.

Problem 10.1. Prove the first statement of Theorem 10.1.
Problem 10.2. Prove Corollaries 10.1 and 10.2 .
Lemma. $\quad f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in F[x], F$ a field, $f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)$ in $K[x]$, where K is the splitting field of $f(x)$ over $F \Rightarrow \alpha_{1} \alpha_{2} \cdots \alpha_{n}=(-1)^{n} a_{0}$.

Problem 10.3. Prove the above lemma.
Theorem 10.2. Let p be a positive rational prime, and let $f(x)=x^{\prime \prime}-a$, where $a \in F$, a field, $a \neq 0$. Then the splitting field K of $f(x)$ over F contains the cyclotomic field C_{p}, over F, and exactly one of the following statements holds:
(1) $x^{p}-a$ has a zero in F, i.e., $\exists b \in F \ni b^{p}=a$. Then $x^{p}-a$ is reducible in $F[x]$ and $C_{p}=K$;
(2) $x^{p}-a$ does not have a zero in F. Then $x^{p}-a$ is irreducible in $F[-1]$ and also in $C_{p}[x]$. Further, it is normal over C_{p}, and $K=$ $C_{p}(\alpha)$, where α is any zero of $x^{p}-a$.

Proof Let $\alpha_{1} \alpha_{2} \quad \alpha_{p}$ be the zeros of $r-a$ and α uny one of them Since $a \neq 0 \quad \alpha \neq 0$ ind we have since $\alpha=a$

$$
\begin{aligned}
&\left(\frac{x}{\alpha}\right)-1-\left(\frac{x^{\mu}-\alpha}{\alpha^{\nu}}\right)=\left(\frac{x-\alpha_{s}}{\alpha}\right) \quad\left(\frac{x-\alpha_{L}}{\alpha}\right) \\
&-\left(\frac{x}{\alpha}-\frac{\alpha}{\alpha}\right) \quad\left(\frac{x}{\alpha}-\frac{\alpha_{g}}{\alpha}\right)
\end{aligned}
$$

[elling) $=x$ la we have

$$
1-1-\left(3-\frac{\alpha_{1}}{\alpha}\right)\left(3-\frac{\alpha_{2}}{n}\right) \quad\left(3 \quad \frac{\alpha}{\alpha}\right)
$$

ind so a /a are the p th roots of unny Therefore $K \supset C_{p}$
Further if ζ ts a promitwe p th root of urity we hive $\alpha=\zeta \alpha$ $1-19 \quad p$ rememberting the or necessary

Case (1) Here some one it least of the ar $\in F$ and we choose that one as α and then by the above , ill the $\alpha \in C_{\nu}$ and $K \subset C_{p}$ Therefore $A-C$

Case (2) Here none of the $a \in F$ Suppose $r^{p}-a-k(x) h(x)$ 7nd we may suppose that $f(x)$ is arreducible in $\Gamma[x]$ say $s(x)-x^{4}$ $+a_{h} r^{b}+\quad+a r+a_{0}$ where $h<p$ Then by the above lemma $\pm a_{0}$ would be a product of h of the ar and so by the above represen tinon of the $\pi+a-\zeta^{n} \zeta^{*}$ Since $h<\rho(h n)-1$ ind so $3 s t \in Z$ $\exists a h-1+i p$ and since $a-a$ we would hove $\left(\pm f_{0}\right)-\zeta^{b 4} a c$ and so surce $a \neq 0$ the zero $\mathrm{an}_{\mathrm{n}}-5^{n+\alpha} \alpha-t \rightarrow$)/de is in F eontrary 10 our hypothesis that none of the $n \in F$ Therefore $x^{\mu} \quad a$ in this case is irreducible in $F[x]$ and so $[F(\alpha) F]-p$ Now if in the above discussion we had assumed that the factorization of $x^{p}-a$ were in $C_{D}[x]$ we would have concluded that $\alpha \in C_{p}$ and so $F(\alpha) \subset C_{P}$ Then we would have the degree of C_{p} over F a multiple of p by Theo rem 133 of Chapter 5 while by Corollary $101\left\{C_{p} F\right] \mid p-1$ a con tradiction Hence in this case $x^{4}-a$ is also irreducible in $C_{p}[x]$ Hence $x^{\mu}-a$ is clearly normal over C_{p} so $\alpha=C_{p}(\alpha)$

II PURE EXTENSION FIELDS

Definition 11 I a polynomal (equation) $E F[x]$ is called pure \Leftrightarrow it is of the form $r^{*}-a\left(x^{*}-a-0\right) \quad a \in F n \in Z^{*}$

An extension field L of a field K is called pure $\Leftrightarrow L-F(\theta)$ where θ is a zero of a pure treducible F polynomal

Theorem lll Let p be a postive rational prome and F a field with characteristic $\neq p$ whitch contanns the p th roots of untty
over F, then if K is a pure extension of degree p over F, K is normal, separable, and cyclic over F.

Problem 11.1. Prove Theorem 11.1.
Theorem 11.2. Let p be a positive rational prime, and F a field with characteristic $\neq p$ which contains the p th roots of unity over F, then, if K is a normal extension of degree p over F, K is pure, separable, and cyclic over F.

Proof: Since $[K: F]=p$, a prime, and K is normal over F, the Galois group is of order p and so is cyclic; let σ be one of its generators. Since $p \neq$ characteristic of F, K is separable over F, and so \exists a primitive element θ of K over F. First, let us suppose that \exists a prımitive p th root of unity, $\zeta, \exists \alpha=\theta+\zeta \theta^{\sigma}+\zeta^{2} \theta^{\sigma^{2}}+\cdots+\zeta^{p-1} \theta^{\sigma^{p-1}}$ $\neq 0$. Then $\alpha^{\sigma}=\theta^{\sigma}+\zeta \theta^{\sigma^{2}}+\cdots+\zeta^{p-1} \theta=\zeta^{-1} \alpha$, and generally, $\alpha^{\sigma^{h}}$ $=\zeta^{-h} \alpha$. Thus the p conjugates of α are all distinct (still assuming $\alpha \neq 0$), and so the minimum polynomial of α is $f(x)=(x-\alpha)(x-\zeta \alpha)$ $\cdots\left(x-\zeta^{p-1} \alpha\right)$. Thus as in the proof of Theorem 11.1, $f(x)=x^{p}-\alpha^{p}$ and since $f(x) \in F[x], \alpha^{\prime \prime} \in F$ and so $F(\alpha)=K$ is a pure extension of F.

Now we must show that ζ can be chosen so that $\alpha \neq 0$. Let us suppose that it is impossible. Then for each choice of a primitive p th root of unity, $\alpha=0$. The p th roots of unity are all given by ζ^{2}, $1=1,2, \ldots, p-1$, where ζ is any one of them. So we have the $p-1$ equations $\theta-\zeta \theta^{\sigma}+\zeta^{2} \theta^{\sigma^{2}}+\cdots+\zeta^{p-1} \theta^{\sigma^{p-1}}=0, \quad \theta+\zeta^{2} \theta^{\sigma}+\zeta^{4} \theta^{\sigma}+$ $\cdots+\zeta_{2^{2(p-1)}} \theta^{\sigma^{p-1}}=0, \ldots, \theta+\zeta^{p-1} \theta^{\sigma}+\cdots+\zeta^{(p-1)^{2}} \theta^{\sigma^{p-1}}=0$, i.e., $\sum_{h=0}^{p-1} \zeta^{k} \theta^{\sigma}=0$. On multiplying the i th equation by ζ^{-t}, summing over i, and interchanging the order of summation, we have

$$
\sum_{h=0}^{p-1}\left(\sum_{i=0}^{p-1} \zeta^{(h-r)}\right) \theta^{\sigma^{h}}=0
$$

Now $\sum_{i=1}^{p-1} y^{(t h-t)}=$ either -1 , if $k \neq t \bmod p$, since then ζ^{t-t} is a zero of $\Phi_{p}(x)=x^{\mu-1}+x^{p-2}+\cdots+x+1$ or $p-1$, if $h \equiv t \bmod p$, since then each term is equal to 1 . Thus, the last double summation gives us $\Sigma_{h=0}^{p-1}(-1) \theta^{\sigma^{h}}+p \theta^{\sigma^{\prime}}$ or $p \theta^{\sigma^{\prime}}=\sum_{h=0}^{p-1} \theta^{\sigma^{h}}$, but since the characteristic of F is not $p, \theta^{\sigma^{t}}$ is the same for all $t=1,2, \ldots, p-1$. This is impossible, since θ was chosen as a primitive element of K, and σ^{t} runs through with t all F-automorphisms of K. Therefore, it is possible to choose ζ so that $\alpha \neq 0$.

The above theorem implies that a field K satisfying the given conditions can be obtained by adjoining one p th root of a, where a is
some element of r Now we consider a theorem implying something simular about roots of unity

Theorem 113 Let p be a positive rational prame and F a field whose characterstic is $\mathbf{0}$ or a prime greater than p Then for the cyclotomic field C_{p}, over $F \boldsymbol{F}$ a finte sequance of fields $L_{0}, L_{1}, \quad, L_{r}$ $\exists F=L_{i} \subset L_{1} \subset \subset L_{r} \supset C_{F} \ni L_{1}$ is pure, normal, and of prime degree over $L_{1-1}, t=1,2, \quad, r$

Proof The theorem is obvious if $\mu=2$, since then $C_{y}=F$
We now assume that the theorem is true for all prmes iess than p and for all felds F satisfying the conditions of the theorem Let d be the degree of C_{p} over F Then by Corollary $102, d \mid p-1$ Let $d=$ $p_{1} p_{2} \quad p_{k}$ be the factonzation of d into (not necessarily distinct) primes Then the characteristic of $F>\boldsymbol{p}_{i}:=1,2, \quad \alpha$ and so the induction hypothesis holds Therefore 3 a finute sequence of fields $F=L_{4} \subset L_{1} \subset \quad \subset L_{r_{1}} \supset C_{p_{1}}$ in which I_{1} is pure, normal and of prime degree over $L_{1-1} t=12 \quad y_{1}$ Then starting from $L_{r_{1}}$, we get another sequence of fields $L_{r}, \subset L_{r i t} \subset \quad \subset L_{r z} \supset C_{p i}$ and C_{1}, Naturally $C_{m i}$ over L_{n} contatns C_{m} over \&) Continuing thus, we get finally a finte sequence of fields $F=L_{1} \subset L_{1} \subset \quad \subset L_{r_{h}}$ where $L_{r_{k}} \supset C_{f_{i}}$ for $t=1,2 \quad A$ over F in which each L_{t} is pure normal and of prome degree over L_{1}, for $t=12 \quad r_{h}$

Now let \vec{C}_{ν} be the cyclotomic field over $I_{r_{k}}$ By Corollary 102 the Galos group I of \bar{C}_{p} over $L_{r_{L}}$ is cyclic Therefore by Problem 149 of Chapter 3 the Galoss group of \bar{C}_{p} over $L_{p_{k}}$ is solvable, so \exists a finte sequence of normal subgroups of $\Gamma \Gamma=H_{0} \supset H_{1} \supset \quad \supset H_{n+1}=$ (c) each of which is of prime index in the preceding Hence by The orem 94, the stibfields $N\left(H_{1}\right)=L_{s_{A}+d}$ are such that each is of prome degree ($=$ some ρ_{j}) over the preceding field and lastly by Theorem 112, since $L_{r_{k}}$ and so a fortion $L_{r_{k}+i}$ contains all the p ith roots of unity for $t=1,2, \quad A$ each field is pure over the preceding Thus we have $F=L_{v} \subset L_{1} \subset \quad \subset L_{r_{k}} \subset L_{r_{k}+1} \subset \quad \subset L_{r}=\bar{C}_{m} \supset C_{\nu}$ over f and each L_{t} is pure, normal and of prome degree over L_{t}, for $t=$ 1,2, r

12 SOLVABILITY BY RADICALS

By solving an equation by radicals, one naturally means expressing the roots of the equation in terms of the coefficients of the equation using addition subtraction miultupication, division and the extraction of roots of expressions previously formed For example, an expression which mught arise in the process could be something like (5-[3/2$\left.\left.\left(4+7^{12}\right)^{1 / 3}\right]^{16}\right\}^{17}$ Considering this as occurning from an equation
with coefficients $\in Q$, we would first adjoin $7^{1 / 2}$, getting then a field which contains $4+7^{1 / 2 / 2}$. Then to that field we adjoin $\left(4+7^{1 / 2}\right)^{1 / 8}$ getting a new field containing $3 / 2-\left(4+7^{1 / 2}\right)^{1 / 8}$, and so on. Thus at each step we adjoin a root of a pure equation, i.e., of the form, $x^{\prime \prime}-a=0$. Lastly, If in adjoining $a^{1 / n}, n$ is not a prime, say $n=p q$, where p and q are prime, we can consider it done by two consecutive adjunctions of roots of pure equations of prime degree. Of course, if n is the product of h primes (not necessarily distinct), we do it by h adjunctions, each of prime degree.

Theorem 12.1. (1) If an irreducible equation $f(x)=0$, where $f(x) \in F[x]$, is solvable by radicals, then the Galois group of the equation is solvable;
(2) if the Galois group of the equation $f(x)=0$ is solvable, then the equation is solvable by radicals. In both cases, the characteristic of F is to be greater than any prime occurring as an index of a radical or as an index of a group of a composition series, or else the characteristic is to be zero.

Proof: (1) As remarked above we may assume that all roots taken are p th where p is a prime. Let $p_{1}, p_{2}, \ldots, p_{h}$ be all the primes. entering in the expression of the roots of the equation as p_{1} th roots of elements in successive fields. If we adjoin successively to F the p_{1} th, p_{2} th, \ldots, p_{h} th roots of unity we get a succession of fields $F=F_{0} \subset$ $F_{1} \subset F_{2} \subset \cdots \subset F_{h}$, each of which by Theorem 10.1 is cyclic over the preceding field. We now adjoin successively all the p th roots of all other elements necessary in the expression of the roots by radicals. By Theorem 11.2, each time we get a pure, separable, cyclic, normal extension of prime degree over the preceding field. Thus a chain of fields $F=F_{0} \subset F_{1} \subset \cdots \subset F_{h} \subset F_{h+1} \subset \cdots \subset F_{h}=W$, where each is normal over all those preceding. The final field W contains all the roots of $f(x)=0$ and is normal over F, and it contains the splitting field K of $f(x)$. Now let Ω be the Galois group of W over F. Then, corresponding to the chain of fields given above, we have a chain of subgroups of $\Omega, \Omega=\Gamma_{0} \supset \Gamma_{1} \supset \cdots \supset \Gamma_{h}=\{\iota\}$, and each of these subgroups is invariant in the preceding and $\Gamma_{2} / \Gamma_{2+1}$ is cyclic and of prime order. To the field K belongs some subgroup of Ω, say Λ, and by Theorem $9.6, \Lambda$ is an invariant subgroup of Ω. We can find another (perhaps the same if $\Lambda=\Gamma_{1}$ for some i) composition series for Ω which contains Λ and whose quotient groups are isomorphic to those of the onginal composition series, $\Omega=\Lambda_{0} \supset \Lambda_{1} \supset \cdots \supset \Lambda \supset \cdots \supset \Lambda_{h}$ $=\{\imath\}$. By Theorem 9.7, Γ / Λ is the Galois group of K over F, and has as composition series $\Omega / \Lambda, \Lambda_{1} / \Lambda, \cdots, \Lambda / \Lambda=\{\imath\}$, and by Theorem 4.4 (3) of Chapter 3, the quotient groups of this composition series are
isomorpher to the corresponding ones of the preceding composition series (for Ω) Hence they all are cyclic and of prome order There fore the Galoss group of A over F is solvible
(2) 1 et k be the spltting field of $f(x)$ and 1 its Galons group Let $1 \supset 1, \supset \quad \supset \mathrm{~J}_{\mathrm{A}}=\{1\}$ be a composition serics for 1 and $F=F_{0}$ $\subset F_{1} \subset \quad \subset F_{k}=\AA$ be the subfields of \mathcal{K} belonging to the se sub groups Finadly let $\boldsymbol{q}_{1} \boldsymbol{q}_{2} \quad \boldsymbol{q}_{\boldsymbol{k}}$ be the primes which are the orders of the quotient groups of the composition sentes By the same process used above in the latter part of the proof of (1) we can modify the chan of fields of Theorem 113 to get 2 ch un of fields whose find one is C_{v} for $p=q \quad 1-12 \quad$ h Now obviously adjoining η root of a pure equation can be done by djoining a single radical Thus we can express the q th roots of untly by me ans of radisals L.et us adjoin these to F obtaining a field N which contuns C_{q} for $t=12 \quad h$ Since F is normilover F, (and hence over F) ind of prime degree $\exists \theta \quad=12 \quad h^{\prime} Э F-F{ }_{1}(\theta)$ and θ a zero of a nomal poly nomn il over $F \&(x)$ Now enther $A(x)$ is reducible in $N[x\}$ in uhich cise all the zeros of $f(x) \in N$ or (x) is arreducible in $N[x]$ in which cise $N-N(i)$) is by Theorem if' a pure exiension and so solvable by rade ils Proceding thes we seach $N\left(\begin{array}{lll}\theta & \theta & \theta_{n}\end{array}\right)$ each of whose elements can be expressed in the desured manner Since $N\left(\begin{array}{lll}0 & \theta_{2} & \theta_{n}\end{array}\right) \lambda$ we heve the desired result

Problent 12 J Fill in the detalts of the first part of the proof of (2)

Any automorphtsm of the splitung field of in irreducible equation $f(r)$ - 0 is completely determined by specifying the im iges of the roots of the equation and since those images must he roots of the equation any such 7utomorpism is determaned hy 1 mapping of the set of the roots of the equition onto itself te by 1 permut tion of the roots of the equation In the case of the equition $r-7-0$ we hive found that the permutations constitute the whole symmetric group of degree 3 and order 6 Ingener il of course the vet of permutations of the roots will be a subgroup of the symmetric group of degree equal to the degree of the equation Bewing thas in mind work the following exercises

Problemf 122 Prove that every equation of degree 23 and 4 is solvable by radicals

Problem 123 Assume the following theorem The Galois group of the general equation of degree n is $S_{\text {。 }}$ Prove that the general equation of degree n is not solvable by radic ils if $n>4$

Chapter 7: Linear Mappings and

Matrices

In this chapter we consider linear mappings of one general R-module into another. Then we consider the special case in which the R-modules are vector spaces and most of the chapter is devoted to that. In the process, matrices are introduced and various canonical forms are studied.

1. LINEAR MAPPINGS OF MODULES

Throughout this chapter, all R-modules are to be unitary unless some remark is made to the contrary, and they are to be left R-modules if R is not commutative.

Definition 1.1. A homomorphism of an R-module L into (onto) an R-module M is called a linear mapping of L into (onto) M (cf. Definition 3.4 of Chapter 4). A linear mapping of an R-module L into itself is called a linear transformation of L; if it is an automorphism of L, a nonsingular linear transformation of L.

Theorem 1.1. If α is a mapping of the R-module L into the R-module M, then α is a linear mapping $\Leftrightarrow \forall \lambda, \mu \in R, \forall a, b \in L$, $(\lambda a+\mu b) \alpha=\lambda(a \alpha)+\mu(b \alpha)$.

Problem 1.1. Prove Theorem 1.1.
Problem 1.2. Prove that if α is a linear mapping of L into M, then $\forall 1 \in L, \forall \lambda, \mu \in R,(\lambda \mu)(\lambda \alpha)=\lambda(\mu(x \alpha))=\lambda((\mu x) \alpha)$.

The product of two mappings for sets of any kind is given by Definition 1.2 of Chapter 2. The sum of two mappings can be conveniently defined only if the set in which the images lie has addition defined in it. In the present circumstances, we do have addition present and so we may define the sum of two linear mappings in a manner similar to that used in Definition 13.1 of Chapter 3.

Derinition 1.2. If α, β are linear mappings of the R-module
L into the R module M then $a+\beta$ and $-\alpha$ tre defined by $\forall x \in L$ $x(\alpha+\beta)=x \alpha+x \beta$ and $\forall x \in L \quad x(-\alpha)--(x \alpha)$ Finally $\alpha-\beta$ $-\alpha+(-\beta)$

Thforem $12 \alpha \beta$ are linear mappings of the R module L into the R module $M \Rightarrow \alpha+\beta \alpha-\beta-\alpha$ are line ir mappings of L into M

$$
\begin{aligned}
\text { Proof Let } \lambda \mu & \in R a b \in L \text { Then } \\
(\lambda a+\mu b)(\alpha+\beta) & =(\lambda a+\mu b) \alpha+(\lambda a+\mu b) \beta \\
& =\lambda(a \alpha)+\mu(b a)+\lambda(a \beta)+\mu(b \beta) \\
& =\lambda[(a \alpha)+(a \beta)]+\mu[(b \alpha)+(b \beta)] \\
& =\lambda[a(\alpha+\beta]+\mu[b(\alpha+\beta)] \\
(\lambda a+\mu b)(-\alpha) & =-[\lambda(a \alpha)+\mu(b a)] \\
& =\lambda(-1)(a \alpha)+\mu(-1)(b \alpha) \\
& -\lambda[-(a \alpha)]+\mu[(b a)] \\
& -\lambda[a(-\alpha)]+\mu[b(-\alpha)]
\end{aligned}
$$

That $\alpha-\beta$ is linear follows by combing the above results
Problem 13 Give a justification for edch step in the above proof

Theorem 13 If $\alpha \beta \gamma$ are linear mappings of the R module L into the R module A then $\alpha+(\beta+\gamma)-(\alpha+\beta)+\gamma$

Problem I 4 Prove Theorem I 3

Theorem I 4 The set E of all linear mappings of an R module L into an R module M is a group with addition as the law of composi tion and a left C module where C is the centril of R with radefined as follows $\forall \mathrm{r} \in R \forall x \in L X(r v)-(r r) a$

Proof $\quad x 0=0$ is clearly a hear mapping and is the neutral element of addt on Hence she first statement follows from Theorems 1^{3} and 13

From the defintion given in the theorem for ra we must have $\lambda[x(r \alpha)]=\lambda[r(x \alpha)]=(\lambda r)(x \alpha)$ and also $\lambda[x(r \alpha)]-(\lambda x)(r \alpha)-$ $r[(\lambda x) \alpha]=r[\lambda(x \kappa)]-(r \lambda)(x \alpha)$ for tll $\lambda \in R$ Now $(\lambda r)(x \alpha)$ will equal $(r \lambda)(x \alpha)$ for each $\lambda \in R$ only of we bave $\lambda r-r \lambda$ This means that if r E C the central of R then it will be true Then we shall have $(\lambda a+\mu b)(r \alpha)-[r(\lambda a+\mu b)] \alpha-r[\lambda(a \alpha)+\mu(b \alpha)]-(r \lambda)(a \alpha)+$ $(1 \mu)(b \alpha)=r[(\lambda a) a]+r[(\mu b) \alpha]-(\lambda a)(r \alpha)+(\mu b)(r k) \Rightarrow r a$ is linear
E is an R group stnce $x\{\{r+s)(\alpha)-\{r+s)(x a y)-r(x \alpha\}+s(x \alpha)$ $-x(r \alpha)+x(s \alpha)=x[(r \alpha)+(s \alpha)]$ so $(r+s) \alpha-(r a)+(s \alpha)$

That the second condifion of Defintion 41 of Chipter 4 ts satis fied follows from choosing C as the central of R

Corollary 1.1. $\quad E$ is an R-module if R is commutative.
Theorem 1.5. $\quad \alpha$ is a linear mapping of an R-module L into an R-module M, β is a linear mapping of M into an R-module $N \Rightarrow \alpha \beta$ as defined in Definition 1.2 of Chapter 2 is a linear mapping of L into N.

Proof: $\quad \forall \lambda, \mu \in R, \forall a, b \in L,(\lambda a+\mu b)(\alpha \beta)=[\lambda(a \alpha)+$ $\mu(b \alpha)] \beta=\lambda[(a \alpha) \beta]+\mu[(b \alpha) \beta]=\lambda[a(\alpha \beta)]+\mu[b(\alpha \beta)]$.

Corollary 1.2. Let L, M, N, P be R-modules and α, β, γ be linear mappings of L into M, M into N, N into P, respectively. Then $(\alpha \beta) \gamma=\alpha(\beta \gamma)$ is a linear mapping of L into P.

Proof: This follows immediately from Theorem 1.1 of Chapter 2 and 1.5.

Corollary 1.3. The set of all linear transformations of an R-module L is a subsemigroup under multiplication of the semigroup of all mappings of L into itself.

Corollary 1.4. The set of all linear transformations of an R-module L is a ring with operators C, where C is the central of R.

Corollary 1.5. If R is a commutative ring with an identity element, the set of all linear transformations of an R-module L is an algebra over R.

Theorem 1.6. The set of all nonsingular linear transformations of an R-module L and multiplication form a group.

Problem 1.5. Prove the above four corollaries.
Problem 1.6. Prove Theorem 1.6.
Problem 1.7. Letting $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in L=V_{4}(Q), y=$ $\left(y_{1}, y_{2}, y_{3}\right) \in M=V_{3}(Q), z=\left(z_{1}, z_{2}, z_{3}\right) \in N=V_{3}(Q), w=\left(w_{1}, w_{2}\right)$ $\in P=V_{2}(Q)$, and α, β, γ be defined by $\gamma \alpha=y$, where $y_{1}=3 x_{1}+4 x_{2}$ $-5 x_{3}+7 x_{4}, y_{2}=x_{1}-2 x_{2}+3 x_{3}+x_{4}, y_{3}=x_{1}+x_{2}+x_{3}+x_{4} ; y \beta=z$, where $z_{1}=4 y_{1}+3 y_{2}-7 y_{3}, z_{0}=y_{1}+2 y_{2}+3 y_{3}, z_{3}=-2 y_{1}+4 y_{2}+y_{3}$; $z \gamma=w^{\prime}$, where $w=z_{1}+4 z_{2}+3 z_{3}, w_{2}=2 z_{1}-3 z_{2}+z_{3}$, prove that α, β, γ are linear mappings.

Problem 1.8. Verify Corollary 1.2 for α, β, γ of Problem 1.7.

2. MATRICES

In the case of R-modules with finite bases, linear mappings can be given in a particularly simple manner. We shall henceforth deal only with unitary R-modules with finite bases and so by Theorem 5.5 of Chapter 4 , we may without loss of generality, deal with $V_{n}(R)$. We
shall associnte with each mopping a set of elements of R and thus set will determine the mapping completely For this gurpose we let $S T \cup V$ be respectively the sets consisting of the first $h m n p$ positive rational integers We shall further suppose that henceforth R is a commutative ring with an identity element

Theorem 21 The R module $R^{v \times T}$ (ef Defintion 72 and Theorem 71 both of Chapter 4) and the R module E of Theorem 14 of all line ir m ppings of $I_{n}(R)$ into $I_{n}(R)$ are isomorphic

Proof Let $e_{1} e_{2} \quad c_{k}$ be q basis of $b_{n}(R)$ and $f_{1} f_{2} \quad f_{m}$ be a basis of $I_{m}(R)$ A linear mapping of $V_{s}(R)$ into $V_{n}(R)$ is of course uniquely determined by giving the images of ϵ_{1} is Let α be 1 line'tr mapping of $\tau_{m}(R)$ into $V_{m}(R)$ Then $e_{i} \alpha-\sum_{j=1}^{n} a_{i j} f_{i}$ $1-12 \quad b a_{1} \in R$ Thus to each such α we have an element
 is in isomorphism

The mapping $a \rightarrow(a$,$) is determined above is onto for let$ $\left(a_{j}\right) \in R^{\times T}$ We determine in element of L whose image is ($a_{j j}$) as follows let $a-\Sigma_{-1} a_{j}$) for $1-1 \geqslant \quad h$ This determines an imige for each basis element of $V_{n}(R)$ Now for any element x of $V_{n}(R) \doteq r_{1} x_{3} \quad x_{n} \in R \ni r-\sum_{i=1}^{n} x e$ so that the imige of x under c of α is to be linear must be given by $r-\Sigma_{i}^{n} x(e \alpha)$ Thus we have determined the mapping α such thit under the mipping in question ($a_{1 s}$) is the imige of a

This mapping is 1 I since if $\left\{\rightarrow\left(a_{j}\right)\right.$ and $\beta \rightarrow\left(a_{1}\right)$ then $\forall x$ $\in V_{h}(R) \quad \tau \alpha=x \beta$ and so $\alpha=\beta$
Now let $\alpha \leftrightarrow\left(a_{j}\right) \beta \leftrightarrow\left(b_{i j}\right)$ Then

$$
c_{1}(\alpha+\beta)-e \alpha+e \beta-\sum_{1}^{m} a_{4} f+\sum_{1}^{m} b_{4} f_{1}-\sum_{j}\left(a_{10}+b_{4}\right) f
$$

Therefore $\alpha+\beta \leftrightarrow\left(a_{i j}+b_{j j}\right)-\left(a_{u}\right)+\left(b_{j}\right)$
lastly if $r \in R$ then

$$
e_{1}(r \alpha)=r(e \alpha)-r \sum a_{s} f_{i}-\sum^{\prime \prime}\left(r t_{j}\right) f
$$

and so $r a \leftrightarrow\left(r a_{i j}\right)=r\left(o_{i j}\right)$
Problem 21 Verffy the preservation of addition under the isomorphism of Theorem 21 for α of Problem 17 and δ given by r $\delta-y-\left(y_{1} y_{2} y_{1}\right)$ where $3_{1}-7 x_{1}+5 x_{2}+3 x_{3}+5 x_{4} x_{2}-x_{1}+4 x_{2}$ $-2 x_{3}+7 x_{4} y_{3}-2 x_{1}+2 x_{2}-3 x_{3}-4 x_{4}$

Definition 21 Let $\left(a_{y j}\right) \in R^{5 \times \tau}$ and $\left(b_{j k}\right) \in R^{T \times L}$ Then $\left(a_{1 j}\right) \quad\left(b_{j k}\right)-\left(\Sigma^{n}, a_{1} b_{j n}\right)$

Theorem 2.2. The $1-1$ mapping in the proof of Theorem 2.1 provides a 1-1 mapping of the linear mappings of $V_{h}(R)$ into $V_{m}(R)$ onto the elements of $R^{S \times T}$, those of $V_{m}(R)$ into $V_{n}(R)$ onto the elements of $R^{7 \times U}$, those of $V_{h}(R)$ into $V_{n}(R)$ onto the elements of $R^{S \times U}$; further, in this 1-1 mapping to the product, in the usual sense, of a linear mapping of $V_{h}(R)$ into $V_{m}(R)$ and a linear mapping of $V_{m}(R)$ into $V_{n}(R)$ corresponds the product, in the sense of Definition 2.1, of the image elements of $R^{S \times T}$ and $R^{T \times U}$.

Corollary 2.1. $A \in R^{S \times T}, B \in R^{T \times U}, C \in R^{U \times V} \Rightarrow A B \in$ $R^{s \times v}, B C \in R^{T \times r}, A(B C)+(A B) C \in R^{S \times V^{r}}$.

We leave the proof of this theorem and its corollary to the reader, but of course the method of proof is to use, as far as proving associativity is concerned, Theorem 1.1 of Chapter 2. Again we have a case in which associativity is easy to establish by relating a system to a set of mappings and using the fundamental result that the associative law holds for mappings. To prove associativity of matrices in other ways is perfectly feasible, but tedious.

Theorem 2.3. The algebra of linear transformations of $V_{h}(R)$ is isomorphic to the algebra $R^{S \times S}$, with multiplication defined in Definition 2.1.

Problem 2.2. Prove Theorem 2.2 and its corollary.

Problem 2.3. Prove Theorem 2.3.

Problem 2.4. Illustrate Corollary 2.1 with the matrices of the linear mappings α, β, γ of Problem 1.7.

Definition 2.2. An element of $R^{S \times T}$ is a matrix with elements in R if addition and multiplication, and multiplication by elements of R are defined as in Definition 7.2 of Chapter 4 and Definitions 1.2 and 2.1. The algebra $R^{5 \times s}$ of Theorem 2.3 is called the total matric algebra over R of order h^{2}, and is denoted by \mathcal{M}_{h}. The matrix of a linear mapping α of $V_{h}(R)$ into $V_{m}(R)$ relative to the bases $\left(e_{i}\right)$ and $\left(f_{j}\right)$ of $V_{h}(R)$ and $V_{m}(R)$, respectively, is the matrix corresponding to α in the isomorphism of the proof of Theorem 2.1. The rows of the matrix $A=\left(a_{i j}\right) \in R^{S \times T}$ are the elements $\left(a_{i 1}, a_{i 2}, \ldots, a_{i m}\right), i=1.2$, \ldots, h and the columns of the matrix $A=\left(a_{i j}\right) \in R^{S \times T}$ are the elements $\left(a_{1}, a_{2}, \ldots, a_{h j}\right), j=1,2, \ldots, m$, and these are often written as

Since the sets S.T.U.V are ordered sets, we shall usually take advantage of that fact and wnte matnces in an arraly which is really a double sequence

Problem 25 Find the sum, product in both orders of

$$
\left(\begin{array}{rrr}
2 & 3 & 4 \\
1 & 2 & 3 \\
-1 & 1 & 1
\end{array}\right) \text { and }\left(\begin{array}{rrr}
1 & 0 & 2 \\
-3 & 1 & 5 \\
2 & 3 & 7
\end{array}\right)
$$

Prorlem 26 Find the zero and identity elements of \mathscr{M}_{n}, the additue inverse

Theorem 24 If a is a linear mappung of $V_{k}(R)$ into $V_{m i}(R)$. the set of image elements is a submodule of $V_{m}(R)$, und the set of elements of $V_{n}^{\prime}(R)$ mapped onto 0 of $V_{m}(R)$ is d submodule of $V_{k}(R)$

Problem 27 Prove Theorem 24 (Hint among other things. use theorems about homomorphisms of groups with operators)

Definition 23 The first submodute of Theorem 24 is called the runge of α and the second the null module of α (nutl) space if R is a field)

3 RANh

We now suppose that R is a field F and so we deal with vector spaces (since we have previously specified that we were dealing with untary R-modules)

Definition 31 The ron (coiumn) raint of a matrix (a_{11}) is the dimension of the space generated by the rows (columns) of (a_{0}) The ramh (nuflhs) of a hinear mapping a of one vector space into another is the dimension of the range (null space) of α

Proslen 3 I Find range null space rank and nullity of the mapping o of Problem 17

Problem 32 Find row rank and column rank of the mapping of Problern 3 1

Theorcal 31 The rank of a linear mapping of of $V_{n}(F)$ into $V_{m}(F)$ is the row rank of any matrix A of α

Proof Let $e_{a}=\Sigma_{j=1} a_{1} f$, where $e_{1} \quad, e_{h}$ is a basis of $V_{n}(F)$ and $f_{1,} \quad f_{m}$ is a basis of $V_{m}(F)$ Let the row rank of $A=\left(a_{r}\right)$ be r and suppose that $\left\{\left(a_{111} a_{12}, a_{\text {ta }}\right\}_{1=1}, \quad r\right.$ is free. renumber-
ing the rows of A if necessary. Then the other rows of A are linearly dependent on these r rows. Let

$$
\left(a_{b 1}, a_{b 2}, \ldots, a_{b m}\right)=c_{b 1}\left(a_{11}, \ldots, a_{1 m}\right)+\cdots+c_{b r}\left(a_{r 1}, \ldots, a_{r n}\right)
$$

for $b=r+1, \ldots, h$. Then

$$
\begin{aligned}
c_{b 1}\left(e_{1}\right)+\cdots+c_{b r}\left(e_{r} \alpha\right)= & c_{b 1} \sum_{j=1}^{m} a_{1,} f_{j}+\cdots+c_{b b} \sum_{j=1}^{m} a_{r j} f_{j} \\
= & \left(c_{b 1} a_{11}+\cdots+c_{b r} a_{r 1}\right) f_{1}+\cdots \\
& +\left(c_{b 1} a_{1 m}+\cdots+c_{b r} a_{r m}\right) f_{m} \\
= & a_{b 1} f_{1}+\cdots+a_{b r} f_{r}=e_{b} \alpha
\end{aligned}
$$

for $b=r+1, \ldots, h$. Therefore, at most r of the $c_{1} \alpha$ are linearly independent. Therefore, rank of $\alpha \leqslant$ row rank of A.

Let the rank of α be s. Then there are s of the $e_{1} \alpha$ which are linearly independent while the remaining are dependent upon them. We may suppose, renumbering the e_{1} if necessary, that they are $e_{1} \alpha, \ldots, e_{s} \alpha$ and that for $b>s, e_{b} \alpha=d_{b 1}\left(e_{1} \alpha\right)+\cdots+d_{b s}\left(e_{s} \alpha\right)$. Then we have

$$
\begin{gathered}
e_{b}=\sum_{j=1}^{m} a_{b j} f_{j}=d_{b 1} \sum_{j=1}^{m} a_{1 j} f_{j}+\cdots+d_{b s} \sum_{j=1}^{m} a_{s s} f_{j} \\
=\left(d_{b_{1}, a_{11}}+\cdots+d_{b s}\left(a_{s 1}\right) f_{1}+\cdots+\left(d_{b 1} a_{1 m}+\cdots+d_{b s}\left(a_{s m}\right) f_{i n},\right.\right.
\end{gathered}
$$

and since the f, are linearly independent, $a_{b j}=d_{b 1} a_{1 \mathrm{~J}}+\cdots+d_{b s} a_{s,}$ which implies that $\left(a_{b 1}, \ldots, a_{b m}\right)=d_{b 1}\left(a_{11}, \ldots, a_{1 m}\right)+\cdots+d_{b s}$ ($a_{s 1}, \ldots, a_{s m}$), for $s<b \leqslant h$. Hence, there are at most s linearly independent rows of A. Therefore, row rank of $A \leqslant \operatorname{rank}$ of α. Therefore, row rank of $A=$ rank of α.

Problem 3.3. Verify Theorem 3.1 for α, β of Problem 1.7.
Theorem 3.2. A linear transformation α of $V_{h}(F)$ is nonsingular \Leftrightarrow rank of $\alpha=h$.

Proof: Concerning the implication \Rightarrow : Since α is an automorphism, the range of α must be $V_{h}(F)$ which is of dimension h, and so ranh of $\alpha=h$.

Concerning the implication \Leftarrow : Since the rank of α is h, the image of $V_{h}(F)$ is a vector subspace of $V_{h}(F)$ of dimension h. Then by Problem 6.4 of Chapter 4, this subspace is $V_{h}(F)$. Therefore, α is onto. To prove that α is $1-1$, let $x, y \in V_{h}(F), x=\sum_{i=1}^{h} \lambda_{1} e_{i}, y=$ $\sum_{t=1}^{h} y_{1} e_{1}$. Then $x \alpha=y \alpha \Rightarrow \sum_{t=1}^{h}\left(x_{1}-y_{1}\right) e_{1} \alpha=0$. But the $e_{1} \alpha$ are linearly independent, so $\lambda_{1}=y_{i}$ and $x=y$. Therefore, α is an automorphism.

Problcm 34 Show that $y_{1}=3 x_{1}+4 x_{2}-5 x_{7}, y_{2}=x_{1}-2 x_{2}-3 x_{3}$ $i_{3}=x_{1}+x_{2}+x_{3}$ is a nonsingular linear transformation of $V_{1}(Q)$

Probles 35 Givente $x_{1}=2 x_{1}+3 x_{2}-4 r_{3} y_{2}=x_{1}+x_{2}+2 x_{3}$, $i_{1}=3 x_{1}+4 x_{2}-2 x_{3}$ a linear transformation of $V_{3}(Q)$ Find its range and nullity directly, and then by using Theorem 3 I

Theorem 33 If ez is a linear mapping of $V_{n}(F)$ tato $V_{m}(F)$. then the ranh of α plus the nullity of $\alpha=$ dimension of $V_{h}(F)=h$

Proof let $\mathscr{S r}^{+}$be the null space of x . and \mathcal{R} the vange of α By Problem 6 JI of Chapter 4 , there exasts a subspace \mathscr{L} of $V_{h}(F)$ $\exists V_{A}(F)$ is the drect sum of \mathscr{N}^{r} and \mathscr{L} By applying Problem 66 of Chupter 4 we have dim $\mathbb{A}^{2}+\operatorname{dim} \mathscr{L}^{\mathscr{L}}=\operatorname{dam} V_{\mathrm{n}}(F)=h$ So if we can show that \mathscr{X} has the same dimension as \mathscr{L} the theorem follows

Each element $x \in V_{n}^{\prime}(f)$ is unquely expressible as $x=4+z$, where, $\in \mathcal{A}$ and $z \in \mathscr{L}$ Then $\pi=v a+z a=0+z a$ so a maps \mathcal{Z} into \mathbb{R} If $z_{1} \alpha=z_{2} \alpha$ then $\left(z_{1}-z_{1}\right) \alpha=0$ and so $z_{1}-z_{2} \in \mathcal{N}^{\prime}$ and since \mathscr{L} is a vector space $z_{1}-z_{2} \in \mathscr{L}$ and so since $\mathscr{N} \cap \mathscr{L}=\{0\}$, $z_{1}=z$ Therefore of gives a $1-1$ mapping of \mathcal{L} into \mathbb{R} It is obviously an onto mapping Therefore a provides an isomorphism of \mathscr{L} and \mathscr{R} and so by Problem 67 of Chapter $4 \mathscr{L}$ and \mathscr{R} have the same di mension

4 CHANGE OF BASIS

We have thus far considered linear mappings relative to a fixed basis $e_{9}, \quad\left(n\right.$ of $t_{n}^{\prime}(f)$ and a fixed basss $f_{1} \quad f_{m}$ of $V_{m}(F)$ Now let $e_{3}, \quad e_{n}$ be another busts of $I_{n}(F)$ Then $c_{1}=\sum_{y=2}^{n} F_{j} e_{3}$ where the $p_{1}, \in F$ sunce the e_{i} form a basis Now sunce the e_{1} form a basis, the i_{1} must be expressible in terms of the e_{4}, ie $\exists r_{J h} \in F \exists e_{2}^{\prime}$ $=\Sigma_{k=1}^{k} r_{j k}{ }_{k}$ Then combining these expressions we have

$$
e_{i}=\sum_{j=1}^{n} p_{i} \sum_{k}^{n} i_{k} c_{k}=\sum_{k=1}^{n}\left(\sum_{j=1}^{n} p_{u} r_{k}\right) e_{k}
$$

Now the e_{1} form a basis and so are linearly independent Hence, we must have $\Sigma_{i}^{\mathrm{n}}, p_{0} f_{j k}=\delta_{k}=1$ if $t=h$ and 0 if $1 \neq h$

Problem 41 Prove that the matrix $I=\left(\delta_{\mu}\right)$, as defined above, is the neutral element of the muluphcative semgroup of Theorem 23

Definition 41 If $\left\{e_{1}\right\}\left\{e_{1}\right\}$ are bases of $V_{h}(F)$ and $e_{1}=$ $\Sigma_{i}^{h}{ }_{1} p_{i j} e_{j}$, then the matrix ($p_{i j}$) is called the matrix of the e_{1} relanve to the et

Theorem 4.1. Let $\left(p_{i j}\right)$ be the matrix of the basis $\left\{e_{i}\right\}$ of $V_{h}(F)$ relative to the basis $\left\{e_{i}^{\prime}\right\}$ of $V_{h}(F)$ and $\left(r_{i j}\right)$ that of $\left\{e_{i}^{\prime}\right\}$ relative to $\left\{e_{i}\right\}$. Then ($p_{i j}$) and ($r_{i j}$) are matrices of nonsingular transformations and so are called nonsingular, and in fact are inverses of each other.

Theorem 4.2. Let α be a linear mapping of $V_{h}(F)$ into $V_{m}(F)$, $\left\{e_{i}\right\},\left\{e_{i}^{\prime}\right\}$ be two bases of $V_{h}(F)$, with $e_{i}=\sum_{j=1}^{h} p_{i j} e_{j}^{\prime},\left\{f_{i}\right\},\left\{f_{i}^{\prime}\right\}$ be two bases of $V_{m}(F)$, with $f_{k}=\Sigma_{w=1}^{m} q_{k w} f_{w}$, and finally let ($a_{i j}$) be the matrix of α relative to the bases $\left\{e_{i}\right\},\left\{f_{j}\right\}$. Then the matrix of α relative to the bases $\left\{e_{i}^{\prime}\right\},\left\{f_{j}^{\prime}\right\}$ is $\left(p_{i j}\right)^{-1}\left(a_{i j}\right)\left(q_{i j}\right)$.

Proof: If we let $\left(p_{i j}\right)^{-1}=\left(r_{i j}\right)$, we have

$$
\begin{gathered}
e_{i}^{\prime} \alpha=\left(\sum_{j=1}^{n} r_{i j} e_{j}\right) \alpha=\sum_{j=1}^{n} r_{i j}\left(e_{j} \alpha\right)=\sum_{j=1}^{n} r_{i j} \sum_{k=1}^{m} a_{j k} f_{k} \\
=\sum_{j=1}^{n} r_{i j} \sum_{k=1}^{m} a_{j k} \sum_{k=1}^{m} q_{k x} f_{w}^{\prime}=\sum_{k=1}^{m}\left(\sum_{j=1}^{n} r_{i j}\left(\sum_{k=1}^{m} a_{j k} q_{k w}\right)\right) f_{w^{\prime}} .
\end{gathered}
$$

Corollary 4.1. If $\left\{e_{i}\right\},\left\{e_{i}\right\}$ are two bases of $V_{h}(F), e_{i}$ $=\sum_{j=1}^{h} p_{i j} e_{j}^{\prime}$, and if α is a linear transformation of $V_{h}(F)$ with matrix $\left(a_{y}\right)$ relative to $\left\{e_{1}\right\}$, then α has matrix $\left(p_{i j}\right)^{-1}\left(a_{i j}\right)\left(p_{i j}\right)$ relative to $\left\{e_{i}\right\}$.

Problem 4.2. Considering the linear mapping α of Problem 1.7 as relative to $(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$ as a basis of $V_{4}(Q)$ and $(1,0,0),(0,1,0),(0,0,1)$ as a basis of $V_{3}(Q)$, find the matrix of this mapping relative to $(1,1,0,0),(1,0,1,0)$, $(1,0,0,1),(0,0,1,1)$ as a basis of $V_{4}(Q)$ and $(1,1,1),(0,1,1)$, $(1,0,1)$ as a basis of $V_{3}(Q)$.

Problem 4.3. Considering the linear mapping β of Problem 1.7 as a linear transformation of $V_{3}(Q)$ relative to $(1,0,0),(0,1,0)$, $(0,0,1)$, find the matrix of β relative to $(1,1,1),(0,1,1),(1,0,1)$.

Problem 4.4. Prove the product of two nonsingular matrices is nonsingular.

5. COORDINATES

Definition 5.1. If $e_{1}, e_{2}, \ldots, e_{h}$ is a basis of $V_{h}(R)$, where R is a ring, if $x \in V_{h}(R)$, and if $x=\sum_{i=1}^{h} x_{i} e_{i}$, then $x_{1}, x_{2}, \ldots, x_{l}$ are the coordinates of x relative to (or with respect to) the basis $\left\{e_{i}\right\}$.

Theorem 5.1. If $\left\{e_{i}\right\},\left\{f_{j}\right\}$ are bases of $V_{h}(R)$ and $V_{m}(R)$, respectively, R a ring, if α is a linear mapping of $V_{h}(R)$ into $V_{m}(R)$
with matrx ($a_{i j}$), then $x \in V_{h}(R)$ is mapped onto $y \in V_{h}(R)$ where $y_{j}=\Sigma_{-1} x_{1} a_{y}, j=1,2, \quad, m$, and $y=\left(3_{1}, y_{2} \quad, y_{m}\right)$, and where $x_{1}, x_{2}, \quad, x_{b}$ and $y_{1}, y_{2,}, y_{n}$ are, respectively, the coordinates of x and $;$

Proof $\quad r \in V_{h}(R) \Rightarrow x=\sum_{i=1}^{n} x_{i} e_{1}, x_{i} \in R \quad$ Then

$$
\begin{aligned}
3=x \alpha & \left.=\left(\sum_{i=1}^{\prime} x_{i} e_{i}\right) \alpha=\sum_{i=1}^{A} x_{i}\left(e_{i} \alpha\right)\right)=\sum_{i=1}^{A} x_{i} \sum_{i}^{n} u_{i} f_{3} \\
& =\sum_{i=1}^{n}\left(\sum_{i=1}^{n} x_{i} a_{U}\right) f_{i} \Rightarrow y_{1}=\sum_{i=1}^{A} x_{i} a_{i j}
\end{aligned}
$$

Corollarys 1 Each \boldsymbol{y} E $\boldsymbol{y}_{m}(\boldsymbol{R})$, and,$E$ fange of α as a linear combination of the rows of the matrix $\left(a_{v}\right)$

Corollary 52 The rank of the lenear mapping α is equal to the row rank of the matrix (a_{4}) of α

Corollary 53 The equations $\sum_{i=1}^{n} x_{j} a_{0}=0, j=12, \quad, m$ diways have solutions other than to $0 \quad 0$) if $h>m$

Problem 5! Prove Corolhnes 51 and 52

Problem 52 Use Theorem 33 to prove Corollary 53
Theorem 52 For a linear mapping α of $V_{n}(F)$ into $V_{m}(F)$, where F is a field \exists bases of $V_{n}(F)$ and $V_{m}(\Gamma) \ni$ relative to these bases, α has matrıx

where r is the rank of α
Proof Let $y^{\prime} . \quad y_{*}$ be a basis for the null space of α Then $\exists x_{1} \quad x_{r} \ni x_{1}, \quad x_{r} .3_{1} . \quad 3$, form a basis of $V_{h}(F)$, and $r+s=h$ Since $s_{i} \alpha=0, x_{i} \alpha$ are generators of the range of α and so are clearly linearly independent since the rank of α is r Let $\mu_{1}=x_{0} \alpha$ and $i_{i} \in V_{m}(F)$ and be such that u_{1}. $\quad \mu_{r} i_{1}$, , im form a basis of $V_{m}(F)$ Then we have $x_{i} \alpha=u_{i}$, for $r=1,2, \quad r$ and $s_{1} \alpha=0$.
for $i=1,2, \ldots, h-r$, and so the matrix of α is as described in the theorem.

6. APPLICATION TO LINEAR EQUATIONS

We shall apply the material of the last paragraph to considering the solutions of systems of linear equations.

Definition 6.1. $\quad c \in V_{h}(F)$, where F is a field, is a solution of the equation $\sum_{i=1}^{h} x_{1} a_{i}=d$, where $d, a_{i} \in F \Leftrightarrow \Sigma_{i=1}^{h} c_{i} a_{i}=d$. If $d=0$, the equation is called homogeneous; if $d \neq 0$, nonhomogeneous.

Theorem 6.1. The set of all vectors of $V_{h}(F)$, each of which is a solution of $\sum_{i=1}^{h} x_{i} a_{i j}=0, a_{i j} \in F, j=1,2, \ldots, m$, is a subspace of $V_{h}(F)$. The dimension of this subspace is $h-r$, where r is the row rank of $A=\left(a_{i j}\right)$. In particular, there will always be at least one solution, not $(0,0, \ldots, 0)$, if $h>m$. We shall call this set of equations a homogencous system of equations and denote it by (H).

Proof: Let e_{1}, \ldots, e_{h} be a basis of $V_{h}(F), f_{1}, \ldots, f_{m}$ be a basis of $V_{m}(F)$, and α be the linear mapping of $V_{h}(F)$ into $V_{m}(F)$ defined as in the proof of Theorem 5.1, by $x \alpha=y_{1} f_{1}+\cdots+y_{m} f_{m}$ where $y_{j}=\sum_{i=1}^{h} x_{1} a_{j v}, j=1,2, \ldots, m$. Then the set of solutions of the system (H) is the null space of α and by Theorem 2.4 , it is a subspace of $V_{h}(F)$. That its dimension is $h-r$ follows immediately from Theorems 3.1 and 3.3. Obviously, the row rank of A cannot be greater than m, so if $h>m, h-r>0$, and so there exists nonzero elements of $V_{h}(F)$ which satisfy (H).

Рroblem 6.1. Prove that the range of a linear mapping α of $V_{h}(F)$ into $V_{m}(F)$ is generated by the rows of the matrix of α.

Theorem 6.2. The system of equations, (N) $\sum_{i=1}^{h} x_{1} a_{i j}=d_{j}$, $a_{i j}, d_{j} \in F$, has a solution \Leftrightarrow the row rank of $A=\left(a_{i j}\right)$ is equal to the row rank of

$$
B=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
& \cdot & \cdot & \\
a_{h 1} & a_{h 2} & \cdots & a_{h m} \\
d_{1} & d_{2} & \cdots & d_{h}
\end{array}\right) .
$$

If $\left(t_{1}, t_{2}, \ldots, t_{h}\right)$ is a solution of (N) and $\left(z_{1}, z_{2}, \ldots, z_{h}\right)$ is a solution of (H), then $\left(t_{1}, t_{2} \ldots, t_{h}\right)+\left(z_{1}, z_{2}, \ldots, z_{h}\right)$ is a solution of (N); furthermore, every solution of (N) can be represented in this form for
a fixed $\left(t_{1} t_{2} \quad t_{n}\right)$ by a sutable choice of $\left(z_{1} z_{2} \quad z_{A}\right)$
Problem 62 Prove Theorem 62
Problem 63 (a) With $A-\left(\begin{array}{ccc}2 & 3 & -4 \\ 1 & 4 & 5 \\ 3 & 7 & 1\end{array}\right)$ solve ($/$)
(b) With the same A and $d_{1}=4 \quad d_{2}=11 \quad d_{3}=6$ solve (N)
(c) with the same A and $d_{1}-3 \quad d_{2}=7 \quad d_{3}=2$ solve (N)

Corollary 6 : If a is in nonsingular transformation of $V_{n}(F)$ with matrix $A=\left(a_{i j}\right)$ the system (N) has one and only one solution

Probicm 64 Without using Theorem 62 prove Corollary 61

7 ROW EQUIVAIENCE AND ELEMENTARY OPERATIONS

Here R is a ning with an uentity element
Detinition 71 (a) A is an $h \times$ in mitrox $\Leftrightarrow A \in R^{x 7}$ where $S=\{12 \quad h\} r=\{12 \quad m\}$
(b) I et A and B be $\| \times m$ nutrices Then A is rou (column) eqminatent to $B \Rightarrow$ the module generited by the rows (columns) of A is the same is the module generated by the rows (columns) of is if R is 1 field the modules will be the row space or the column space
 operation performed on A is any one of the following
(1) the intershange of two rows (columns)
(b) the multaplication of a row (column) by a unt of R
(c) the addituon to the elements of any row (column) of A of A times the corresponding elements of dny other (defintity not the same) row (column) where $\boldsymbol{A} \in \boldsymbol{R}$

Theorem 71 If any elementary row (column) operation is performed on a matrix A the resultug matrax sis row (column) equiv alent to A and if R is \boldsymbol{q} field the resultang matrix has the same row (column) rink ds A

Proof The concluston of the theorem is obvious if the ele mentiry operation is of type (a) or (b) We shatl consider the cise of an elementary operation of type (c) Let $r_{1} r_{2} \quad r$ be the rows of A ind let \& be the efement of \boldsymbol{R} by which we multuply say the first row and add the results to the corresponding elements of the second tow (There is no restriction on the generality by choosing these two
rows, and it makes the notation much simpler.) If x is in the module generated by the original rows, then it can be expressed in the form $a_{1} r_{1}+a_{2} r_{a}+\cdots+a_{h} r_{h}=x$, but we may write this as $x=\left(a_{1}-a_{2} c\right) r_{1}$ $+a_{2}\left(r_{2}+c r_{1}\right)+\cdots+a_{h} r_{h}$, where the $a_{i} \in R$, but this latter expresses x as in the module generated by the new rows. On the other hand, if x is in the module generated by the new rows, then $x=b_{1} r_{1}+b_{2}$ $\left(r_{2}+c r_{1}\right)+\cdots+b_{h} r_{h}$, where the $b_{j} \in R$. But this can be written as $x=\left(b_{1}+b_{2} c\right) r_{1}+b_{2} r_{2}+\cdots+b_{h} r_{h}$ which shows that if x is in the module generated by the new rows, it is in the module generated by the original rows. Therefore, the two modules are the same and so the two matrices are row equivalent. Exactly similar reasoning applies to the case of operations with columns. The statement about the case in which R is a field follows from the definition of row and column rank.

Theorem 7.2. Row (column) equivalence is an equivalence relation.

Problem 7.1. Prove Theorem 7.2.

Definition 7.3. Let $A, B \in R^{S \times T}$. Then A is equivalent to B $\Leftrightarrow B$ can be obtained from A by a finite number of elementary row and column operations.

Theorem 7.3. Equivalence of matrices is an equivalence relation.

Problem 7.2. Prove Theorem 7.3.
Theorem 7.4. The matrix $I_{h}=\left(\delta_{u}\right)$, where $\delta_{i j}=0$ for $i \neq j$, $\delta_{i l}=1$, is the identity element for \mathcal{M}_{h}. Further, $I_{h} A\left(A I_{h}\right)=A$ for any $h \times n(m \times h)$ matrix A. (When, from the context, it is clear what the size of I_{h} must be, we shall often omit the subscript.)

Definition 7.4. An elementary matrix is any matrix obtained from the identity matrix by performing exactly one elementary row or column operation.

Theorem 7.5. An elementary matrix is nonsingular.
Problem 7.3. Prove Theorem 7.4.
Problem 7.4. Prove Theorem 7.5. (Hint: use Theorem 7.1.)
Problem 7.5. Write an elementary 3×3 matrix of each of the possible types of Definition 7.2. Do this for both row and column operations.

Problem 76 Show that any elementary matrix may be ob tanted by ether an element wry row operation or an elementary column operation

Problem 77 Prove that an elementary row (column) opera tuon performed on a matrix A can be performed by multuplying A on the left (right) by the elementary matnix obtuned by performang on the identity matrix the given elementary row (column) operation

Problim 78 Venfy the statement of Problem 77 for the $\operatorname{matrix} A=\left(\begin{array}{rrr}2 & 4 & 5 \\ -1 & 3 & 7 \\ 4 & 0 & 1\end{array}\right)$

Problent 79 Prove that the product of any finte number of elementary matrices is nonsingular

Thiorem 76 If the matrix A is row (columa) equivalent to the matrix B then $B=P A(B=A Q)$ where $P(Q)$ is nonsingular and further is the product of elementary matriges

Problem 710 Prave Theorem 76 (Hint use Definition 71 the method of the proof of Theorem 71 and Problem 77)

Coroliary 71 If the matrix A is equivalent to the matrix A then there exist nonsingular matrices P and Q such that $P A Q=B$

We have in this gresent section been considenig matnges with elements in in arbitrary ring R We shall very soon consider matnces with elements in d field \mathcal{F} but first for convenience we estiblish some further results about vector subspices

8 A PARTICULAR KIND OF BASIS FOR A VECTOR SUBSPACE

We first prove a lemma
Lemma If the vector space S over F is generated by $a_{1} a$ a_{k} then S is generated by $a_{1} \quad a, b a \quad a_{k}$ where $b_{1}-\Sigma_{=1}^{A} A, l_{1} \lambda \in F A \neq 0$ for each,$-12 \quad h$

Proor Obviously the vector space generated by the second set of vectors is contaned in S Now

$$
a_{1}--\frac{\lambda_{1}}{\lambda} a_{1}-\quad-\frac{\lambda_{1}}{\lambda_{1}} a_{1}+\frac{1}{\lambda_{i}} b \quad \frac{\lambda_{1}}{\lambda_{1}} a_{+1}-\quad \frac{\lambda_{h}}{\lambda} a_{\lambda}
$$

Thus every vector in S can be expressed as a linear combination of the vectors of the second set. Therefore, the two spaces are the same.

The proof of the next Theorem is not particularly difficult, but it is slightly tedious. The reader would be well advised to take some particular matrix and carry through each step of the proof with it.

Theorem 8.1. Let the vector subspace $S \subset V_{h}(F)$ be generated by $a_{i}=\left(a_{i 1}, \ldots, a_{i h}\right), j=1,2, \ldots, k$. Then S has a basis ($b_{i 1}, b_{i 2}$, $\left.\ldots, u_{i t}\right)=b_{i}, i=1,2, \ldots, m$, such that there exists a strictly increasing finite sequence j_{i} (i.e., $j_{i}<j_{p}$ for $i<p$), (1) $b_{i j}=0$ if $j<j_{i}$; (2) $b_{i j_{i}}=1$; (3) $b_{u j_{i}}=0$, for $u \neq i$.

Proof: If any of the a_{11} are different from zero, let $j_{1}=1$. Otherwise, let j_{1} be the smallest j such that for some $i, a_{i j} \neq 0$. Then among the $a_{\nu_{1}}$ which are not zero, let $a_{21} j_{1}$ be that one with smallest i. Now let $c_{1 j}=\left(1 / a_{2 i j_{1}}\right) a_{l_{1} j}, j=1, \ldots, h$. Then by the above lemma, S is generated by the set of vectors obtained by replacing $a_{i_{1}}$ by $c_{1}=\left(c_{11}, c_{12}, \ldots, c_{1 n}\right)$ in the original set. Let us now remember, if necessary, the original set of the a_{i} so that $a_{i 1}$ becomes a_{1}. Then S is generated by $c_{1}, a_{2}, \ldots, a_{k}$ and we have $c_{1 j}=0$ for $j<j_{1} ; a_{i j}=0$ for $j<j_{1} ; c_{i_{1}}=1$.

Now replace each $a_{1} i>1$, by $a_{1}-a_{i j} c_{1}=c_{1}$. Then $c_{1}, c_{2}, \ldots, c_{k}$ generate S, by the lemma, and $c_{1 j}=0$ for $j \leqslant j_{1}, i>1$. Now, if $j_{1}<h$, on operating on c_{2}, \ldots, c_{k} in the same manner, we get a set $c_{1} d_{2}$, \ldots, d_{k} such that these k vectors generate S and $d_{i j}=0$ for $k \leqslant j_{2}$, $i>2 ; d_{2 j_{2}}=1$. Now replace c_{1} by $d_{1}=c_{1}-c_{1 j_{2}} d_{2}$ and we have further that $d_{1 j 2}=0$.

Continuing by induction, we finally reach a set of vectors e_{1}, \ldots, e_{k} which generate S and have the properties: $e_{i j}=0$ if $j<j_{1}$, $e_{i_{i}}=1, e_{v_{j}}=0$, if $v<i$, and further $e_{1}, e_{2}, \ldots, e_{r}$ generate S.

Now we replace e_{1}, \ldots, e_{r} by $b_{i}=e_{i}-e_{i_{r}} e_{r}$, for $i<r$ and $b_{r}=e_{r}$, and we have a set of vectors which possess the properties stated in the theorem. That they generate S is clear from their derivation with frequent use of the lemma. That they are linearly independent follows immediately from the three properties. Therefore, they are a basis of S.

Problem 8.1. Verify in detail the linear independence of the b_{i}.
Problem 8.2. Find a basis of the type of Theorem 8.1 for the vector space generated by $a_{1}=(0,0,0,3,2,4), a_{2}=(0,0,0,4,2,0)$, $u_{3}=(0,0,0,0,3,1)$.

Problem 83 Do we same as n Problem 82 for $3_{1}=$ $(1352-1) \quad \pi=(742-23) a_{2}-(42153) a_{4}=(89855)$

9 EQUIVAI ENCE OF MATRICES OVER A FIELD

We now consider matrices with elements in a field r and we shall find that many of the theorems of Section 7 ure such that their con verses also hold

Theoreme 91 The matrix A as row (column) equivalent to the matrix $A \Rightarrow A$ and B have the sume row (coltimn) ronk

Probleat91 Prove Theorem91

Theoreat 92 The $h \times m$ mitrix A h is row ranh $r \Rightarrow A$ is row equivalent to 7 matrix of the form

where $a_{u}-1$
Problem9, Use Theorem \& I to prove Theorem 9 ?
Probiem 93 Give the form for column equivalence corre sponding to the form of Theorem 92

Problem 94 Find a matrix of the form of Theorem 92 row equvalent to

$$
A-\left(\begin{array}{rrrr}
2 & 1 & -4 & 1 \\
-2 & -1 & 4 & 1 \\
2 & 2 & 4 & 3 \\
10 & 7 & -4 & 9
\end{array}\right)
$$

Theorem 93 (cf Problem 79) A matrix over a field F is nonsingular $\Leftrightarrow A$ is a product of elementary matrices

Proof The mplication \Leftarrow is est
The implication \Rightarrow If $A \in \mathcal{M}_{A}$ is nonsingular it is of row rank h and so by Theorem 92 row equivalent to the identity matrix I Thus by Theorem $76 l-P A$ where P is a product of a finite number of elementary matnces Letting $P-E_{1} E \quad E_{h}$ we hove $A=$ $E_{h}{ }^{\prime} E_{h}{ }_{1} \quad E_{2}{ }^{\prime} E_{1}{ }^{\prime}$

Corollary 9.1. If $B=P A \quad(B=A Q)$ where $P(Q)$ is nonsingular, then B is row (column) equivalent to A.

Problem 9.5. By using the method of the proof of Theorem 9.3, find the inverse of $\left(\begin{array}{rrr}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 2 & 3\end{array}\right)$.

Problem 9.6. Prove Corollary 9.1.
Theorem 9.4. A is row (column) equivalent to $B \Longrightarrow$ column (row) rank of $A=$ column (row) rank of B.

Proof: By Theorems 3.1 and 3.3, if we can show that the null space of B is the same as the null space of A, we have the theorem. (We shall prove the parenthetical statement.)

Since A and B are column equivalent, there exists a nonsingular Q such that $B=A Q$. Let σ be the nonsingular linear transformation with matrix Q, and α and β the linear mappings with matrices A, B, respectively. Then $\beta=\alpha \sigma$.

Now if $x \in$ null space of α, then $x \alpha=0$, and so $x \beta=x(\alpha \sigma)=$ $(. x \alpha) \sigma=0 \sigma=0$, and so the null space of $A \subset$ null space of B.

On the other hand, if $x \in$ null space of B , then $x \beta=0$. Then we have $x \alpha=(x \alpha)\left(\sigma \sigma^{-1}\right)=x(\alpha \sigma) \sigma^{-1}=(x \beta) \sigma^{-1}=0 \sigma^{-1}=0$, and so the null space of $B \subset$ null space of A.

Therefore, null space of $B=$ null space of A.

Problem 9.7. Prove the other case of Theorem 9.4.

Theorem 9.5. The matrix A over the field F is of row rank $r \Rightarrow A$ is equivalent to the matrix $\left(c_{i j}\right)$, where $c_{i j}=0$ for $i \neq j, c_{i i}=1$ for $i<r$, and $c_{i i}=0$ for $i>r$.

Proof: By elementary row operations, A is equivalent to a matrix of the form given in Theorem 9.2. Then by elementary column operations of type 3, all the nonzero elements except the $a_{i j_{i}}$ can be eliminated. Then by further elementary operations, this time of type 1 , the $a_{i j_{i}}$ can be moved to the position specified in the theorem.

Theorem 9.6. If A is a matrix over a field F, then row rank of $A=$ column rank of A.

Proof: Let A^{\prime} be the matrix, row equivalent to A, obtained by the use of Theorem 9.2 and $A^{\prime \prime}$ that obtained from A^{\prime} by the use of Theorem 9.5. By these two theorems, A and $A^{\prime \prime}$ have the same row rank. Now, since A is row equivalent to A^{\prime}. by Theorem 9.4, the column rank of $A=$ column rank of A^{\prime}. Now the process used in the
proof of Theorem 95 to obtain A from A consisted of using only cle mentory column operations and so A has the same column rank as A and the same column rank as A Now A has obviously the same row rank as column rank Therefore the column rank of A - row rank of A

After Theorem 96 we we gustified mahing the following defin tion for matrices with elements in a field

Definitiov 9 If A is a matrix over a field then the ranh of A is ats row rank

Theorem 97 Two matriees over a field Γ are equivalent if and only if they hive the same rank

Probleat 98 Prove Theorem 97

10 EQUIVALENCE OF MATRICES OVER A EUCLIDEAN RING

Much of what we have established about matrices over 1 field can be ipplied to matrices over a Euclidean ring To factlitate this applica won we move the following lemma

Lempia Let R be an integral doman and F its field of quotients and let $r_{1} x_{z} \quad x_{k} \in V_{A}(R)$ Then $x_{i} x_{2} \quad x_{k}$ ure line irly inde pendent elements of $V_{A}(R) \Rightarrow x_{2} x_{k} \quad x_{h}$ are finearly independent elements of $V_{n}(\Gamma)$
$P_{\text {Roof }}$ The mplicition $=$ is obvious
The implicition \Rightarrow Suppose that $x_{1} x_{3} \quad x_{k}$ tre linearly inde pendent in $V_{n}(R)$ but not in $I_{n}(F)$ Then $d a \in F$ not all $0 \quad \exists$ $\sum_{i=1}^{n} a t_{1}=0$ Now let $a_{1}-b$ ic where $b \in E R$ ind let d be the product of thl the ${ }_{8}$ for wheth $b_{i} \neq 0$ Then da $\in R$ Vi and we have $\Sigma_{=1}^{h} d a_{i} x_{i}=0$ where the ewefficients $\in R$ and are not ill zero since the a_{i} are not all zero We have a contradiction and so the $x_{1} x_{2} \quad x_{k}$ are linearly independent in $V_{A}(F)$

In Definution 91 we defined the row rank of a matrix over a field Because of the above lemma we are jusufied in making the following defintion for matrices over an integral doman

Definition 101 The row rank column rank and rank of a matrix A over an integral doman I is the appropriaie rank of A con sidered as a matrix over F the field of quotents of l

For matrices over a field we had the very convenient result given by Theorem 9.7, that if two matrices have the same rank they are equivalent. This is no longer true when we consider matrices over an integral domain as Problem 10.1 below show. First, we need a definition.

Definition 10.2. A matrix $A=\left(a_{i j}\right)$ is called a diagonal matrix $\Leftrightarrow \forall i \neq j, a_{i j}=0$. Such a matrix is denoted by $\operatorname{diag}\left(a_{11}, a_{22}\right.$, $\left.a_{h h}\right)$.

Problem 10.1. Prove that $\operatorname{diag}(1,1,1)=A$ and $\operatorname{diag}(2,2,2)$ $=B$ are equivalent as matrices over Q but not as matrices over Z.

Theorem 10.1. Let E be a Euclidean ring. Then a matrix $A=\left(a_{i j}\right)$ of rank r, considered as a matrix over E, is equivalent to a matrix $\operatorname{diag}\left(h_{1}, h_{2}, \ldots, h_{r}, 0,0, \ldots, 0\right)$, where h_{i} / h_{i+1}, for $i=1,2$, $\ldots, r-1 ; h_{1} \neq 0$ for $i=1,2, \ldots, r$.

Proof: Consider $\delta\left(a_{i 1}\right), i=1,2, \ldots, k$, where $\delta(x)$ is given in Definition 4.1 of Chapter 5. If $\delta\left(a_{11}\right)$ is not the smallest positive integer in this set, bring the smallest one into position (1,1), by interchanging rows. Then, since $\exists q_{i}, r_{i} \in R \ni a_{i 1}=a_{11} q_{i}+r_{i}$ (using now the new $\left.a_{11}\right)$, where $\delta\left(r_{1}\right)<\delta\left(a_{11}\right)$, by multiplying the first row by $-q_{i}$ and adding it to the i th, if $\delta\left(r_{i}\right)>0$, we get in the position $(i, 1)$, r_{i}. If not all $\delta\left(r_{1}\right), i>1$, are zero, let $\delta\left(r_{j}\right)$ be the smallest positive $\delta\left(r_{1}\right), i \geqslant 1$. Then we can move it to position (1,1) (if it is not already there), and continue. Finally, since δ is integral valued, we get zeros in the first column below the position $(1,1)$. Now, if $\delta\left(a_{11}\right)$ is the minimum positive value among the $\delta\left(a_{1 j}\right)$, we can proceed for the first row as we did for the first column and get zeros to the right of the position (1,1). If not, replace a_{11} by that element in the first row with minimum positive δ value. Then, as before for the first column, we can get zeros in all the places of the first row. Now, in this process we may have introduced some nonzero elements in the positions $(i, 1)$ for $i>1$. But. we have now in the (1,1) position an element of smaller positive δ value than before. By continuing the process, since δ takes on only nonnegative integral values, we eventually get a matrix equivalent to the original one with zeros in the first column and the first row except in position (1,1).

Of course, if all the elements in the first column are zero, we may by an elementary operation bring, if $A \neq 0$, (of course, if $A=0$ the theorem is trivially true) a nonzero element into position (1,1).

Now we proceed in like manner to get in the position $(2,2)$ a
nonzero element if there is one left in the matrix besides that in posi tion (1 1) and we proceed to get zeros in the second row and second column except for position (2 2) In the process the first row and first column 're not affected and have no effect upon any of the other rows

Continumg thus we get a dagonal matnx dagi $d_{1} d_{2} \quad d_{r}$ $0 \quad 0)$ If $d \mid d$, we are through If not by elementary operat ons we may move the d of smallest δ value into position (1 1) Then if $d d_{2}$ we miy multuply the first now by -4 where $d_{2}=d_{1} q_{1}+s$ $\delta(s)<\delta\left(d_{1}\right)$ ind then add the first column to the second column Then multuply the first row by q und add to the second and we have digg(d $s d_{2}$) Now interchonge as before s and d Continuing thus we eventutlly get dig($h_{1} \quad h_{0} 0 \quad$ 0) where $\left.h\right|_{+1}$ $1=12 \quad r-1$

It follous from constdering the field of quotients r of E and then ipplying Theorem 95 th it exactly r of the h are not zero

The form of the matrix in Theorem 10 is called the Smulh normal form

Problem 102 Apply Theorem 101 to $\left(\begin{array}{ll}2 & 4 \\ 6 & 8\end{array}\right)$ as 3 matrix over Z

Problem 103 Apply Theorem 101 to $\left(\begin{array}{lll}\lambda & \lambda & 0 \\ \lambda & \lambda & 0 \\ 0 & 0 & \lambda\end{array}\right)$ as a mutrix over $Q[\lambda]$

II EQUIVALFNCE OVER $\Gamma[\lambda]$ SIMILARITY

We are now going to apply some of the results ?bout equivalence of matices over i Euclide in dom in to a pruticular Euclidean doman $F[\lambda]$ where F is a field wid λ an indetermante Then we shall apply these to another hind of equivalence relation in $\mathcal{M}_{h^{\prime}}$

We shall now use is an indetermanate when we have matrices as coefficients and λ as an indeterminate when we have elements of F is coefficients Thus R^{\times}[1$]$ s the set of all polynomals in A with coefficients $h \times h$ matrices with elements in R while $(R[\lambda])^{s \times}$ is the set of all \& \times k matrices whese elements are polynomals in λ with coefficients in R

Theorem if if If R is a commutative ring with an identity element then as algebras over $R R^{\times}\{I]$ is isomorphe to $\{R[\lambda]\} \times s$

Problem 11.1. Prove Theorem 11.1.

We now need a definition and a proposition about polynomials for which we have had no previous need.

DEFINITION 11.1. If the leading coefficient of $f(x)$, of degree $n, \in R[x]$. where R is a ring, is a unit of R, then $f(x)$ is said to be proper of degree n or of proper degree n.

Lemma. Let $a(x), b(x) \in R[x]$, where R is a ring with an identity element, and a, b are proper of degrees m_{2} and m_{1}, respectively. Then if $a(x) p_{1}(x)=p_{2}(x) b(x)$, where $p_{1}(x), p_{2}(x) \in R[x], \exists q(x)$, $r_{1}(x), r_{2}(x) \in R[x] \ni r_{i}(x)=0$ or $\operatorname{deg} r_{i}(x)<m_{i}$, for $i=1,2$ and such that

$$
\begin{aligned}
& a(x) r_{1}(x)=r_{2}(x) b(x) \\
& \qquad p_{1}(x)=q(x) b(x)+r_{1}(x) \\
& p_{2}(x)=a(x) q(x)+r_{2}(x) .
\end{aligned}
$$

Proof: By Theorem 1.4 of Chapter 5, $\exists q_{1}, q_{2}, r_{1}, r_{2} \in R[x]$ $\ni r_{i}=0$ or deg $r_{i}<m_{i}$ for $i=1,2$ and $p_{1}(x)=b(x) q_{1}(x)+r_{1}(x)$, $p_{2}(x)=a(x) q_{2}(x)+r_{2}(x)$. Then $a r_{1}-r_{2} b=a p_{1}-a q_{1} b-p_{2} b+a q_{2} b$ $=a q_{2} b-a q_{1} b=a\left(q_{2}-q_{1}\right) b$. Now $a r_{1}-r_{2} b$ is either zero or, by Theorem 1.3 of Chapter 5, of degree $<m_{1}+m_{2}$. Since a unit is a regular element, $a\left(q_{2}-q_{1}\right) b$ is either 0 or of degree $\geqslant m_{1}+m_{2}$. Therefore, both these expressions are 0 , and we have $a r_{1}=r_{2} b$, and q_{1} $=q_{2}=q$.

Theorem 11.2. If A and B are equivalent matrices of $(F[\lambda])^{S \times S}$, and if the corresponding elements of $F^{s \times s}[\Lambda]$, given by Theorem 11.1, are proper of degree 1 , then there exists nonsingular matrices P, Q $\in F^{s \times S} \ni A=P B Q$, where F is a field.

Proof: Since A and B are equivalent, $\exists P_{1}, P_{2} \in(F[\lambda])^{S \times S}$, products of elementary matrices, $\exists A P_{1}=P_{2} B$. The corresponding elements of $F^{S \times S}[\Lambda]$ can, without serious confusion, be denoted by the same letters. Since A and B (as elements of $F^{S \times S}[\Lambda]$) are of degree I, by the above lemma, $\exists R_{1}, R_{2} \in F^{s \times S} \ni A R_{1}=R_{2} B$. If we can establish that R_{1} and R_{2} are nonsingular, the desired result easily follows. Let us apply Theorem 1.4 of Chapter 5 to $P_{1}^{-1}\left(P_{1}^{-1}\right.$ exists and $\in F^{s \times s}[A]$ by Theorem 7.6), and we have $P_{1}^{-1}=Q_{3} A+R_{3}$, where $R_{3}=0$ or deg $R_{3}=0$. Also, by the lemma, $\exists Q, \exists P_{1}=Q B$ $+R_{1}$. where $R_{1}=0$ or deg $R_{1}=0$. Then we have $I=P_{1}^{-1} P_{1}=$ $\left(Q_{3} A+R_{3}\right)\left(Q B+R_{1}\right)=Q_{3} A Q B+Q_{3} A R_{1}+R_{3} Q B+R_{3} R_{1}$ and so $I-R_{3} R_{1}=Q_{3} A Q B+Q_{3} R_{2} B+R_{3} Q B$. The left side of this last
equation is ether 0 or of degree 0 while the nght side equals ($Q_{3} t Q$ $\left.+Q_{3} R_{2}+R_{3} Q\right) B$ and so is 0 or of degree $\geqslant 1$ since B is proper of degree 1 Therefore, both sides are $0,1 \mathrm{e} \quad R_{3} R_{1}=I$ and so R_{1} is non singular since it has an inverse R_{3} Similarly, R_{2} is nonsingular Then $A=R \cdot B R_{1}^{-1}$ or $A=P B Q$, where $P \Rightarrow R_{\mathrm{g}}$ and $Q=R_{\mathrm{t}}{ }^{-1}$

Theoren 113 Two $h \times m$ matrices, with elements in a field F, are equivalent \Leftrightarrow they are matnces of the same linear mapping of $V_{n}(F)$ into $V_{m}(F)$ for sutably chosen b ises of $V_{h}^{\prime}(F)$ and $V_{m}(F)$

Probitm 112 Prove Theorem 113 (Hint use Theorem 42 and Corollary 71)

Definition 112 Two matrices A and B are sumbar \Leftrightarrow a non sungular matnx $P \exists A=P{ }^{1} B P$

Theoren 114 Simalamy of matnces is an equivalence relation

Theores il 9 Two matrices are simslar \Leftrightarrow they are matnees of the same linear transformation with respect to surably chosen bases

Problfm 113 Prove Theorem It 4
Problem 114 Prove Theorem 115
Thforen $116 \quad A \quad B \in \Gamma^{i x g}$ are sumarar $\Leftrightarrow N-A \quad \lambda-B \in$ $(F[\lambda])^{\times 4}$ are equivalent

Proof The relation \Rightarrow Let $A=P{ }^{\prime} B P$ Then $\lambda-A=$ $\lambda I-P^{1} B P=P{ }^{1}(\lambda I-B) P \Rightarrow \lambda I-A$ and $\lambda I-B$ are equivalent

The relation $=$ Let $\lambda I-A$ and $A I-B$ be equivalent Then by Theorem 112 there exist nonsingular matrices $P, Q \in F^{\times s} \ni$ $P(\lambda-B) Q=\lambda l-A=A P Q-P B Q \Rightarrow P Q=I \Rightarrow A=Q{ }^{1} B Q \Rightarrow$ A, B are simular

12 VECTOR SUBSPACES INVARIANT UNDER A LINEAR TRANSFORMATION

First we make a remark about notation For brevity, we sometimes write a matrix as a matrix of blocks Thus mstead of

$$
\left(\begin{array}{cccc}
a_{11} & a_{1 n} & a_{1 m+1} & a_{1 m} \\
a_{k 1} & a_{h n} & a_{k n+1} & a_{k m} \\
0 & 0 & a_{k+1 n+1} & a_{3 k+1} \\
0 & 0 & a_{r n+1} & a_{r n}
\end{array}\right)
$$

$$
\begin{aligned}
& \text { we write }\left(\begin{array}{cc}
A_{1} & A_{3} \\
0 & A_{2}
\end{array}\right) \text {, where } \\
& A_{1}=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
& \cdot & \cdot
\end{array}\right) \quad . \quad 0=\left(\begin{array}{cccc}
0 & \cdots & 0 \\
a_{k n} & \cdots & a_{k n}
\end{array}\right), \quad 0 \quad . \quad . \\
& A_{2}=\left(\begin{array}{ccc}
a_{k+1 n+1} & \cdots & a_{k+1} m \\
& \cdot & \cdot \\
a_{r n+1} & \cdots & a_{r m}
\end{array}\right), \quad A_{3}=\left(\begin{array}{cccc}
a_{1 n+1} & \cdots & a_{1 m} \\
\cdot & \cdots & \cdot & \\
a_{k n+1} & \cdots & a_{k m}
\end{array}\right) .
\end{aligned}
$$

Definition 12.1. Let α be a linear transformation of $V_{h}(F)$. Then a subspace M of $V_{h}(F)$ is an invariant subspace of $\alpha \Leftrightarrow \forall x \in$ $M, x \alpha \in M$.

For any linear transformation there are always at least two invariant subspaces, namely $V_{h}(F)$ and the subspace consisting of 0 alone. Also, the nullspace of α is an invariant subspace of α. First we have two theorems about invariant subspaces, and then we consider how to determine them.

Theorem 12.1. Let M be an invariant subspace of α, a linear transformation of $V_{h}(F)$. Let the dimension of M be $r<h$. Then there exists a basis $\left\{e_{1}\right\}$ of $V_{n}(F)$ such that the matrix of α relative to this basis is $\left(\begin{array}{cc}A_{1} & 0 \\ A_{3} & A_{2}\end{array}\right)$ where A_{1} is an $r \times r$ matrix, 0 is an $r \times(h-r)$ zero matrix, A_{2} is an $(h-r) \times(h-r)$ matrix, and A_{3} is an $(h-r) \times r$ matrix.

Proof: Let e_{1}, \ldots, e_{r} be a basis of M and $e_{1}, \ldots, e_{r}, e_{r+1}$, \ldots, e_{h} a basis of $V_{h}(F)$. Then $e_{1} \alpha=\sum_{j=1}^{r} a_{i j} e_{i}$ for $i=1,2, \ldots, r$; $e_{i} \alpha^{2}=\sum_{j=1}^{h} a_{13} e_{j}, i=r+1, \ldots, h$. The form of $\left(a_{1 j}\right)$ is then as stated.

In general, $A_{3} \neq 0$. In fact, even if $V_{h}(F)=M \oplus N, A_{3}$ is not necessarily zero.

Problem 12.1. Apply Theorem 12.1 to the transformation of $V_{3}(Q)$ given by: $f_{1} \alpha=2 f_{1}+5 f_{3}, f_{2} \alpha=f_{1}+2 f_{2}-7 f_{3}, f_{3} \alpha=f_{1}-6 f_{3}$, f_{1}, f_{2}, f_{3} are a basis of $V_{3}(Q)$. Note that even though $V_{3}(Q)$ can be expressed as the direct sum of two subspaces, the submatrix $A_{3} \neq 0$.

Theorem 12.2. Let M and N be invariant subspaces of α, a linear transformation of $V_{h}(F)$. Further, let $V_{h}(F)=M \oplus N$ and dim $M=r$. Then there exists a basis $\left\{e_{i}\right\}$ of $V_{h}(F) \ni$ the matrix of α relative to the $\left\{c_{i}\right\}$ is $\left(\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right)$, where A_{1} is an $r \times r$ matrix and A_{2} an $(h-r) \times(h-r)$ matrix.

Proof: Let e_{1}, \ldots, e_{r} be a basis of M and e_{r+1}, \ldots, e_{h} be a
basis of N Then $e \alpha=\sum_{j=1} a_{4 f} e_{j} t=1 \quad r$ and $e_{i} \alpha=\sum_{j \times r+1}^{*} a_{j} e_{j}$ $t-r+1 \quad h$ So $\left(a_{b}\right)$ has the form spectied

Definition 122 Let the vector space F over the field F be the direct sum of the two subspaces M and N which ore invartant subspaces of the linear transformation α of E Let α_{1} ind α_{2} be the restrictions of α to M and N respectively Then and only then is α called the direct sum of α_{1} and α_{2} and written $\alpha_{1}+\alpha_{2}=\alpha$ The sub spaces M ind N are sud to reduce a completely Also the matrix of α is said to be the direct sum of the matraces of Ω_{1} ind α_{2} and we write $A-A \oplus A_{2}$ where A_{1} nd A_{2} are the matrices of κ_{1} ndd α_{2} re spectively

Proalem 122 Gencralize Theorem 122 and Definumon 122 to the case of n subspaces

In Defintion 2 I of Chapter 5 we defined $f(\alpha)$ where $f(x)$ is i polynomal and er is an element of 1 rong contaning the coefficients of $f(r)$ Now the ring of all line ir transformations of a vector space E over a field Γ contans a subring isomorphac to F (see Problem 123 below) and so we miy consider polynomials $\in \mathcal{F}[r] f(x)$ and consider $f(a x)$ where $t \sim$ is a linear trinsiformation of E We shall let $\mathscr{N}^{\prime}(\alpha)$ ind $\mathscr{N}^{\prime}(f(\alpha))$ the latter briefly $\mathcal{N}^{\prime}(f)$ denote the null spaces of the linear transformations t and $f(a)$ respectively

Problfa 173 Prove that the ring of all linear transformations of a vector space E over, field $/$ has i subring isomorphic to F (Hint Let t be the identity transformation and then use the mapping $f \leftrightarrow h$ of F into the rug)

Theorem 123 a is a linear transformation of the vector space E over $F f(r) \in F[x] \Rightarrow N^{\prime}(f)$ is on invare int subspate of a

Proor I et $r \in \mathcal{M}(f)$ ie $x f(\alpha)-0$ Now since F is a field $\alpha f(\alpha)-f(\alpha)$ a Thus we have $($ кa) $f(\alpha)-x(\alpha f(\alpha))-$ $x(f(\alpha) \quad \alpha)-(x f(\alpha)) \alpha-0 x-0$ Therefore $\boldsymbol{x} \in \in \mathcal{P}(f)$

Theorem 124 a is ilfnear transformation of the vector space E over $F f(x) ;(x) \in \Gamma[x] g(x) \|(x) \Rightarrow \mathcal{F}^{\prime}(g) \subset \mathcal{N}^{\prime}(f)$

Proof By hypothesis $\exists h(x) \in F[x] \ni f(x)=g(x) h(x)$ Then of $x \in \mathcal{N}(x) \quad x_{1}(\alpha)-0$ and so $x f(\alpha)=x(b(\alpha) h(\alpha))=$ $(x g(\alpha)) h(\alpha)=0 h_{f}(\alpha)-0$ Therefore $r \in \mathscr{N}(f)$

Theorem 125 ex is a ine'ur trinsformation of the vector space
E over $F, f_{i} \in F[x], \quad i=1,2, \ldots k, \quad d(x)=\left(\underset{\substack{1 \\ \text { (this the g.c.d.) }}}{\left.f_{2}, \ldots, f_{k}\right)} \Rightarrow\right.$ $\mathcal{N}(d)=\cap_{i=1}^{k} \mathcal{N}\left(f_{i}\right)$.

Proof: By Theorem 12.4, $\mathscr{N}(d) \subset \mathscr{N}\left(f_{i}\right)$, so $\mathscr{N}(d) \subset$ $\cap_{i=1}^{i} \mathcal{N}\left(f_{i}\right)$. By Problem 4.4 of Chapter 5 generalized, $\exists s_{i}(x) \in$ $F[x] \ni d(x)=\sum_{i=1}^{k} s_{i}(x) f_{i}(x)$. Now if $x \in \cap_{i=1}^{k} \mathscr{N}\left(f_{i}\right)$, then $x\left(f_{i}(\alpha)\right)=0, i=1,2, \ldots, k$. So $x d(\alpha)=x \sum_{i=1}^{k} s_{i}(\alpha) f_{i}(\alpha)=0$. Therefore, $\cap \cap_{i=1}^{k} \mathscr{N}\left(f_{i}\right) \subset \mathscr{N}(d)$.

THEOREM 12.6. α is a linear transformation of the vector space E over $F, f_{i}(x) \in F[x], i=1,2, \ldots, k$,

$$
h(x)=\left[f_{1}, f_{2}, \ldots, f_{k}\right] \Rightarrow \mathscr{N}(h)=\sum_{i=1}^{k} \mathscr{N}\left(f_{i}\right)
$$

Proof: Since $f_{i} / h, \mathcal{N}(h) \supset \mathcal{N}\left(f_{1}\right), i=1,2, \ldots, k$. Hence, if $x \in \Sigma_{i=1}^{k} \mathscr{N}\left(f_{i}\right), x=\sum_{i=1}^{k} x_{i}$, where $x_{i} \in \mathscr{N}\left(f_{i}\right)$ and so $x \in \mathscr{N}(h)$. To show that $\mathcal{N}(h) \subset \Sigma_{i=1}^{k} \mathscr{N}\left(f_{i}\right)$, we must show that if $x \in \mathcal{N}(h)$, then we can represent x as $x=\sum_{i=1}^{k} x_{i}$, where $x_{i} \in \mathcal{N}\left(f_{i}\right), i=1,2$, \ldots, k. Since $f_{i} \mid h, \exists q_{i}, \in F[x] \ni h=q_{i} f_{i}$ for each i. Then, using Problem 4.4 of Chapter 5 again, $\exists s_{i} \in F[x] \ni 1=\Sigma_{i=1}^{k} s_{i}(x) q_{i}(x)$, since $\left(q_{1}, q_{2}, \ldots, q_{k}\right)=1$. Then $\sum_{i=1}^{k} s_{i}(\alpha) q_{i}(\alpha)=\iota$, the identity transformation, and so $x=x \iota=\sum_{i=1}^{k} x\left(s_{i}(\alpha) q_{i}(\alpha)\right)$. We shall now show that $x\left(s_{i}(\alpha) q_{i}(\alpha)\right) \in \mathcal{N}\left(f_{i}\right), \forall i$, and this will establish the desired result. Consider $\left[x\left(s_{i}(\alpha) q_{i}(\alpha)\right)\right] f_{i}(\alpha)=x\left[s_{i}(\alpha) q_{i}(\alpha) f_{i}(\alpha)\right]=x\left[s_{i}(\alpha)\right.$ $h(\alpha)]=x\left[h(\alpha) s_{i}(\alpha)\right]=(x h(\alpha)) s_{i}(\alpha)=0 \cdot s_{i}(\alpha)=0$. Therefore, $\mathrm{x} \in$ $\sum_{i=1}^{k} \mathcal{N}\left(f_{i}\right)$. Therefore, $\mathscr{N}(h)=\Sigma_{i=1}^{k} \mathscr{N}\left(f_{i}\right)$.

Theorem 12.7. α is a linear transformation of the vector space E over $F, f=f_{1} f_{2} \cdots f_{k}, f_{1}, f_{2}, \ldots, f_{k} \in F[x],\left(f_{i}, f_{j}\right)=1$ for $i \neq j \Rightarrow$ $\mathscr{N}(f)=\mathscr{N}\left(f_{1}\right) \oplus \mathscr{N}\left(f_{2}\right) \oplus \cdots \oplus \mathcal{N}\left(f_{k}\right)$.

Proof: Since the above conditions imply that $f=\left[f_{1}, f_{2}, \ldots\right.$, $\left.f_{k}\right]$, we have by Theorem 12.6, $\mathscr{N}(f)=\sum_{i=1}^{k} \mathscr{N}\left(f_{i}\right)$. Thus to establish the statement of the theorem, we need merely show that this sum is direct. For this it suffices to show that $\mathscr{N}\left(f_{i}\right) \cap \mathscr{N}\left(f_{j}\right)=\{0\}$, for $i \neq j$. Now $\left(f_{i}, \sum_{j=1, j \neq i}^{k} f_{j}\right)=1$, and so if we apply Theorem 12.5 , we have, since $d(x)$ in that theorem is 1 , and $\mathscr{N}(\iota)=0 .\{0\}=$ $\mathscr{N}\left(\Pi_{j=1, j \neq i}^{k} f_{j}\right) \cap \mathscr{N}\left(f_{i}\right)$, or applying Theorem 12.6 again, we have $\sum_{j=1, j \neq 1}^{k} \mathcal{N}\left(f_{j}\right) \cap \mathscr{N}\left(f_{i}\right)=\{0\}$ which implies $\mathscr{N}\left(f_{i}\right) \cap \mathscr{N}\left(f_{j}\right)=\{0\}$, for $i \neq j$.

Theorem 12.8. α is a linear transformation of $V_{h}(F) \Rightarrow$ there
exists a unque mome polynomal $m(x) \in F[x] \ni m(a)=0$, and if $g(x) \in F[r], g(\alpha)=0 \Leftrightarrow m(x) \mid g(x)$

Proof For any $a \in \vdash_{s}(F)$, the set $a, a \alpha_{4} a \alpha^{2}{ }^{t}$, $a x^{t}$ must be linearly dependent for some $t \leqslant h$, sunce any $h+1$ efements of $V_{k}(F)$ are linearly dependent 1 et t be chosen as smill as possible, and then for $c_{1} \in f$ we have $\sum_{t-1} c_{1} a \alpha^{I}=0$ Let $g(x)=\sum_{i=1}^{t_{1}} c_{1} x^{i}$ and then $\operatorname{ag}(\alpha)=0$ (et $e_{1}, e_{2}, \quad, e_{k}$ be a basis for $V_{k}(F)$ and let $g_{1}(x)$ be chosen for each $\epsilon_{i} t=1,2 . \quad, h$ as was done above for a Let $f(x)=\left[\begin{array}{lll}n_{1} & g_{1}, & g_{h}\end{array}\right]$ Then by Theorem $124, c_{i} f(\alpha)=0$ for each , Now let $y \in V_{h}(F)$ then $\}=\Sigma_{i=1}^{n} y_{i} C_{i}$ and since $f(x)$ is linear (cf Problem 124 below),$f(a)=0$ Therefore, $f(\alpha)=0$ it is evident that the set of all elements $h(v) \in F[x] \equiv h(c x)=0$ form an tdeal in $I[x]$ By Corolliry 8 I of Chapter 5 this deal ss a principal ideal Let the mons generator of ths נdeal be $m(x)$ Then $m(x)$ has the proper fies stated in the theorem

Probicm 124 Prove that if $f(x) \in f(x]$ if α is a haear trans formation of the vector space E over F then $f(\kappa)$ is a linear transfor mation of E

Problcm: 125 Find the polynomis $m(x)$ of the last theorem for the linear transform tion of Problem 121 (Hint use the method of the proof of the theorem)

Definition 123 The polynomal $m(x)$ whose existence is established by Theorem 128 is called the mutumum pols nomal of ahe Lunear transformathots α

13 MINIMUM POLYNOMIALS

In thas section we shall consider mummum polynomals of linear trans formituons and of elements of a vector space relatuve to a linear transformation

Thiorem 131 Iet $m(x)$ be the minimum polynomal of the
 the factorization of $m(x)$ into a product of powers of distinct monic polynomials each arreducible in $F[\mathrm{r}]$ Let $L_{\mathrm{r}}=\mathbb{N}\left(p_{1}{ }^{{ }^{1} 1}\right), t=1,2$ s Then $L_{i} L_{2} \quad, L_{s}$ reduce ar completely ie $V_{n}(F)=L_{i} \oplus L \in \theta$ $\oplus L_{2}$ and $\alpha=\alpha_{1}+\alpha_{0}+\quad+\alpha_{*}$ where α_{1} is the linear transfor mation of L_{1} which is the resinction of a to L_{i} The matrix of α is the direct sum of the matrices of the α_{6}, and each matrox of the α_{i} ts a $t_{i} \times t_{1}$ matrix where t_{i} is the dimension of $\tilde{F}\left(p_{l}^{\prime}\right)$ Lastly the minmum polynomal of α_{i} IS $p_{i}^{h_{i}}$

Problem 13.1. Prove Theorem 13.1. [Hint: most of the theorem follows from the preceding theorems once it is realized that $\mathcal{N}(m(\alpha))=V_{h}(F)$.]
I_{n} the next four exercises the reader is asked to find the minimum polynomial for a given matrix (i.e., for the transformation which has the given matrix as matrix). Either the method used in the proof of Theorem 12.8 may be employed or the following: let

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) .
$$

Since this is obviously not a multiple of I, we compute

$$
A^{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

and see if there exist $a_{2}, a_{1}, a_{0} \in Q \ni a_{2} A^{2}+a_{1} A+a_{0} I=0$; i.e.,

$$
a_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)+a_{1}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)+a_{0}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

By looking at the element of $a_{2} A^{2}+a_{1} A+a_{0} /$ in position (1,1), we see that $a_{0}=0$; in position $(1,2)$ that $a_{1}=0$; and finally in position $(1,3)$ that $a_{2}=0$. Thus A^{2}, A, I are not linearly dependent and so the degree of the minimum polynomial is at least 3 and so we try using I, A, A^{2}, A^{3}. We shall prove later that the degree of the minimum polynomial of an $h \times h$ matrix is $\leqslant h$.

Problem 13.2. Find the minimum polynomial of the above A.
Problem 13.3. Do the same for $B=\left(\begin{array}{rrr}0 & 1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$.
Problem 13.4. Do the same for $C=\left(\begin{array}{rrr}0 & 1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$.
Problem 13.5. Show that $D=\left(\begin{array}{rrr}0 & -1 & 2 \\ -1 & 1 & 1 \\ -1 & -1 & 3\end{array}\right)$ has the same minimum polynomial as C.

Problem 13.6. Factor the minimum polynomial $m(x)$ of the matrix C into a product of powers of polynomials, irreducible in
$Q[x]$ as in Theorem 13: it will turn out that $m(x)=p_{t}^{2} p_{z}$ Find $\mathscr{N}\left(p_{1}{ }^{2}\right)$ and $\mathscr{N}\left(p_{2}\right)$ and prove that $V_{3}(Q)$ is their direct sum Then express C in the form of Theorem 122 Verify that p^{2} and p_{2} are the minimum polynomals for the matrices C_{1} and C_{2} respecively in th it represent ition of C

Prohlem 137 Do the same as in Problem 136 for A and B
Problem 138 Keeping in mand Definition 112 Theorems I15 122 and the resulas of the exercises bove find for the matrix A and the representation $\left(\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right)$ of Problem 137 the matrix of Defimition 112

Problem 139 Do the same as in Problem 138 for $C D$ and B

Thicoremi 132 ar is imear tansformation of $\vdash_{n}(F) a \in$
 $\Sigma=0(n \alpha)=0$

Proof If $a \in i_{n}(F)$ then the set a acr $a \alpha^{2} \quad a \alpha^{k}$ must be linenrly dependent since they ure $h+I$ elements of $V_{n}(F)$ Thus there must exist a rel tion of the form of the theorem where $n<h$

Corollary 13 I Under the conditions of Theorem 13 ? there exists a unique mon colyomill $n(x) \in F[x]$ of minimum
 $g(x)$

Proof Dy Theorem $13^{\text { }}$, there exists at least one $f(x) \in$ $F[x] \equiv f(a)-0$ Let $s(x) \in F[x]$ be another such polynomal Then $c[f(\alpha)+s(\alpha)]-f(\alpha)+a,(\alpha)-0$ and $\forall h(x) \in F[x]$ $6[f(\alpha) h(\alpha)]-[f(a)] h(\alpha)-0 h(\alpha) \quad 0 \quad a[h(\alpha) f(\alpha)]-a[f(\alpha)$ $h(\alpha)]-[a f(\alpha)] h(\alpha)=0$ Therefore the set of all $f(x) \in E[x] \ni$ of $(\alpha) \quad 0$ s an ideal All ide als in $F[x]$ are princip al Therefore 7 monic $m_{u}(x) \in F[x]$ wheh generates this sdeal and that it is unque and $\operatorname{ag}(\alpha)-0 \Rightarrow I_{4}(x) \lg (x)$ follow from the well known properties of principal ideals

Definition 13 : The unique monic polynomal $n_{n}(x)$ whose existence is established in Corolliry 131 is called the order of a relature to α

Problem 1310 Prove that the degree of the order of a is less than or equal to degree of the mmmum polynomtal of α

Problem 13.11. Find the orders of $(1,2,0)$ and $(0,0,1)$ for the linear transformation whose matrix is C of Problem 13.4. (Hint: in this and several of the following exercises, the reader might find it convenient in finding $a \alpha$, to regard it as

$$
\left(a_{1}, a_{2}, \ldots, a_{h}\right)\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 h} \\
& \cdot & \cdot \\
a_{h 1} & \cdots & a_{h h}
\end{array}\right)
$$

Problem 13.12. Find the orders of $(1,3,-1)$ and $(0,-1,1)$ for the linear transformation whose matrix is D of Problem 13.5.

Problem 13.13. Do the same as in Problem 13.11 for B of Problem 13.3.

Problem 13.14. Show that in the above three exercises, the orders divide the minimum polynomials of the linear transformations.

Problem 13.15. Find the orders of the sum of the two vectors in Problems 13.11, 13.12, 13.13.

Problem 13.16. Find the order of $(1,2,0)$ for D of Problem 13.5.

14. CYCLIC SPACES AND TRANSFORMATIONS

Definition 14.1. The subspace generated by $a, a \alpha, a \alpha^{2}, \ldots$, where $a \in V_{h}(F)$ and α is a linear transformation of $V_{h}(F)$, is the cyclic space generated by a under α, and is denoted by $\{a\}$.

Theorem 14.1. The cyclic space generated by $a \in V_{h}(F)$ is an invariant subspace of α.

Proof: Let $v \in\{a\}$. Then $v=c_{0} a+c_{1} a \alpha+c_{2} a \alpha^{2}+\cdots+$ $c_{n} \| \alpha \alpha^{\prime \prime}=a f(\alpha)$, where $f(x)=\sum_{i=0}^{n} c_{r} x^{x}$. Then $v \alpha=a f(\alpha) \alpha \in\{a\}$.

Corollary 14.1. $\{a\}$ is the smallest invariant subspace of α which contains a.

Problem 14.1. Find $\{a\}$ for the vectors given in Problems 13.11, 13.12, 13.16.

Corollary 14.2. $m_{a}(x)$ is the minimum polynomial for the linear transformation of $\{a\}$, which is the restriction in $\{a\}$ of α.

Corollary 14.3. $m(x)$ for α is a multiple of $m_{a}(x) \forall a \in$ $V_{11}(F)$.

Problem 142 Prove Corollanes 142 and 143
Problem 143 Show by an example that even though $V_{h}(F)$ $=L_{1} \oplus L_{2}$ where $L_{1}=\left\{0_{1}\right\},-1 \geq$ the mimum polynomal of a need not be the product of $m(x)$ and $m_{m+}(x)$

Theorem 142 If the orders $m_{i}(x)$ of $f_{i} \in l_{n}(F) I=12$
r are relatively prome in pairs then the order of $f=f+f_{2}+$ $+f_{x}$ is the product $m_{t}(x) m(r)$
$m_{r}(x)=11(x)$
Proof $\quad f_{i} h(\alpha)=0 \quad t=12 \quad r$ and so $f_{i} n(x)=0 \quad t=12$
r Therefore $f\left(f(\alpha)=\Sigma_{-1} f h(\alpha)=0\right.$ and so $m,(v) \mid n(v)$ Now Ift $s_{1}(r)=n_{f}(x) m(x) m_{r}(x) \quad m_{r}(x)$ Then $f s_{1}(\alpha)-0$ ind $f_{j} s_{1}(\alpha)$ $=0$ for $J-23 \quad r$ Therefore sunce $f s_{i} f(\alpha)=f_{1} s_{1}(\alpha)+f_{8} s_{1}(\alpha)$ $+\quad+f_{r} s_{1}(\alpha)$ we hove $f s(\alpha)=0$ Therefore ${ }^{\prime \prime}(x) \mid s_{1}(x)$ and since ($m(x)$ m (r)) 1 for $1-23 \quad r m_{1}(x) \mid m_{f}(r)$ Similarly $m(r) \mid m_{f}(r) \quad 1=12 \quad r$ Therefore $n(x) \mid m_{s}(r)$ und so since both $n(x)$ and $m_{f}(r)$ tre monic we hive $n(r)-m_{i}(r)$

Definition 142 Lel a be iline ir transformition of $I_{n}(F)$ Then a set of elements $e_{1} e_{3} \quad \ell_{n} \in \vdash_{n}(F)$ goneratc $I_{n}(F)$ rela He to $\alpha \Leftrightarrow V_{n} \in \mathrm{~J}_{A}(F) \exists \phi(x) \in f[x] \ni n-\Sigma^{\prime \prime}{ }_{1}$ e申 (α)

Such a set of elements ilways exists since $V_{h}(f)$ has an ordinary basis and this generates $I_{h}(F)$ in the ?bove sense with all the $\phi(x)$ E F

Theorem 143 mirt is the minimum polynomin of α i linear trinsformation of $V_{n}(f) \Rightarrow \exists f \in I_{p}(f) \exists i_{f}(r)-m(r)$

Proof tet tae \quad generate $I_{n}(F)$ relative to ax ind let $m(x)=\left[\begin{array}{lll}H_{e}(x) & m_{r i}(x) \quad m_{n}(1)\end{array}\right]$ Now $m_{f}(x) \|_{m}(x)$ and 50 $m(x) \mid m(x)$

On the other hand of $n-\Sigma_{-1}^{\prime \prime} \in \phi(\alpha)$ then $n m(x)-\Sigma_{i=1}^{n} e \phi_{i}(\alpha)$ $m(\alpha)-\Sigma \quad c_{i} m(\alpha) \phi(\alpha)-0 \Rightarrow m(\alpha)=0 \Rightarrow m(x) \mid m(r)$ by The orem 128 Hence $m(x)-m(x)$

Now let $m_{r}(r)-(p\{x\})^{2}\left(p_{2}(x)\right)^{2} \quad\left(p_{r}\{x\}\right)^{2} \quad$ where $p(x)$ is monic and irreductble in $+[x] 1-12 \quad \|$ and $p_{1}(x) \neq p(x)$ if,$\neq j$ Then if $A-\operatorname{mox}\left(k \quad k \quad L_{n}\right) f=12 \quad r$ we have $m(x)-(p(x))^{h}\left(p_{2}(x)\right)^{k_{z}} \quad\left(p_{r}(x)\right)^{2}$

If the onder of $n \quad m_{v}(x)-t(x) f_{2}(x)$ then $:-m t_{1}(\alpha)$ thas order $t_{2}(x)$ since $t_{2}(\alpha)=0$ ard if $d(\alpha)-0$ where $d(x) E F[x]$ then $\mu_{1}(\alpha) d(\alpha)-0 \Rightarrow r_{1}(x) r(x)\left|r_{1}(x) d(x) \Rightarrow t_{2}(x)\right| d(x)$ and so $t_{2}(x)$ is the order of 1

Thus if $h_{1}=h_{11_{1}}$, the order of $f_{1}=e_{1}\left(p_{2}(\alpha)\right)^{h_{21}}\left(p_{3}(\alpha)\right)^{h_{31}} \cdots$ $\left(p_{r}(\alpha)\right)^{h_{r_{1}}}$ is $\left(p_{1}(x)\right)^{t_{1}}$. Similarly, we can find $f_{J} . j=2,3, \ldots, r \ni f_{j}$ has order $\left(p_{s}(x)\right)^{\prime}$. Then, by Theorem 14.2, $f=f_{1}+f_{2}+\cdots+f_{r}$ has order $m(x)$.

Problem 14.4. Find vectors f of the type of Theorem 14.3 for each of the linear transformations of Problems 13.2, 13.3, 13.4, 13.5.

Definition 14.3. The linear transformation α of $V_{h}(F)$ is called cyclic (also called nonderogatory) $\Leftrightarrow \exists e \in V_{h}(F) \ni$ the cyclic space generated by e under α is $V_{h}(F)$.

Corollary 14.4. The minimum polynomial of a linear transformation of $V_{h}(F)$ has degree $\leqslant h$.

Problem 14.5. Prove Corollary 14.4.
Problem 14.6. Determine which linear transformations studied so far are cyclic.

Theorem 14.4. A linear transformation α of $V_{h}(F)$ is cyclic \Leftrightarrow the degree of the minimum polynomial is h.

Proof: The implication \Rightarrow. If α is cyclic, $\exists e \ni\{e\}=V_{h}(F)$ is cyclic $\Rightarrow \operatorname{deg} m_{e}(x)=h$, and so by Corollary 14.3, $\operatorname{deg} m(x) \geqslant h$, but by Corollary 14.4, $\operatorname{deg} m(x) \leqslant h$. Therefore, $\operatorname{deg} m(x)=h$ and $m_{e}(x)=m(x)$.

The implication \Leftarrow. If $\operatorname{deg} m(x)=h$, then by Theorem 14.3, ヨe $\ni m_{e}(x)=m(x)$. Then $\operatorname{deg} m_{e}(x)=h$, and so $\operatorname{dim}\{e\}=h$. Therefore, by Problem 6.4 of Chapter $4,\{e\}=V_{h}(F) \Rightarrow \alpha$ is cyclic.

Theorem 14.5. If α is a cyclic linear transformation of $V_{l}(F)$, there exists a basis of $V_{h}(F)$ such that relative to this basis the matrix of α is

$$
\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
& & \cdot & \cdot & \cdots & \\
0 & 0 & 0 & 0 & \cdots & 1 \\
a_{0} & a_{1} & a_{2} & a_{3} & \cdots & a_{h-1}
\end{array}\right)
$$

where $m(\lambda)=\lambda^{h}-a_{h-1} x^{h-1}-\cdots-a_{1-\lambda}-a_{0}$ is the minimum polynomial of a.

Proof: By Theorem 14.3, ヨ $e \in V_{\underline{h}}(F) \ni\{e\}=V_{h}(F)$. Then
 have

$e_{1} \alpha=$		
$c_{2} \alpha=$	$\quad e_{2}$	
l		

$$
e_{n}, \alpha=e_{n}=a_{n} e_{1}+a e_{2}+a e_{a}+\quad e_{n}
$$

Deimition 144 The matrix in Theorem 145 ts called the coutpanon matrix of m(t) Thas mutrix ts called the Jordan cononcal matrie of the linequ transform tion a

Theorem 146 if C sthe companion matrix of ut(x) then the Smith normal form (cf Theorem 10 1) of $x /-C$ is diag (1) I $m\left(\begin{array}{l}\text {) })\end{array}\right.$

Problem 147 Prove Theorem 146
Problem 148 Use any of the line ut transformations found in Problem 146 to be cyclic and verify Theorem 14 解 for the chosen case

The form of the matnx in Theorem 14 i displays the minmum polynomad of the cyclic transformation but not its factorization We stiall now develop a matnix of ar whech displays the factonzation of $m(x)$ into fictors irreducible in $F[x]$ Thus the first form is unchanged when we go to an extension field of F whule the second will in general change

We shafl first consider the special case in which $m(x)=(p(x))^{*}$ where $p(x)$ is irreducible in $F[x]$ For ease in reference we are going to prove the theorem first and then state at Let $p(x)=x^{4}-a_{x}, x^{x}$ t - $\quad-a_{1} x-a_{0}$ Then of course $\operatorname{dcg} m(x)=h_{4}-k_{q}$ Further let $e \in V_{n}(F)$ and be such that $\{c\}=V_{\phi}(F)$ We shall now define some vectors which form a bases of $V_{h}(F)$

$$
\begin{aligned}
& f_{1}-e(p(\alpha))^{1}{ }^{1} \quad f_{2}=e(p(\alpha))^{k}{ }^{1} \alpha \quad f_{8}-e(p(\alpha))^{2}{ }^{1} \alpha^{q} t \\
& f_{q+1}-e(p(\alpha))^{A}=f_{q+2}-e(p(\alpha))^{*}{ }^{2} \alpha \gamma \quad f_{z q}-e(p(\alpha))^{2} \alpha^{2} \alpha^{1} \\
& f_{k}{ }_{10+1}-e \quad f_{A}{ }_{10 \alpha 2}-c \alpha \quad f_{k q}-e \alpha^{9}{ }^{1}
\end{aligned}
$$

Each f is of the form $e \phi(\alpha)$ where deg $\phi(x)<h q-h$ Further more no two of the ϕs have the same degree Then the haf s are hnearly independent over F since a lmear relation between them would give rise to a polynomal $s(x) \in F[x] \ni$ es $(\alpha)-0$ contrary
to our hypothesis that α is cyclic. Therefore, the f 's form a basis of $V_{h}(F)$.

The matrix of α relative to $f_{1}, f_{2}, \ldots, f_{h q}$ is obtained in the usual way as follows:

$$
\begin{aligned}
& f_{1} \alpha=\quad f_{2} \\
& f_{2} \alpha=\quad f_{3} \\
& f_{q-1} \alpha=\quad f_{q} \\
& f_{q} \alpha=e(p(\alpha))^{k-1 q}=e(p(\alpha))^{1,-1}\left[\alpha^{q}=p(\alpha)\right] \\
& =e(p(\alpha))^{h-1}\left[a_{0} \iota+a_{1} \alpha+\cdots+a_{q-1} \alpha^{q-1}\right] \\
& =a_{0} f_{1}+a_{1} f_{2}+a_{2} f_{3}+\cdots+a_{q-1} f_{q} \\
& f_{q+1} \alpha=\quad f_{q+2} \\
& \text { (1) } f_{q+2} \alpha= \\
& f_{q+3} \\
& f_{2 q-1} \alpha=\quad f_{2 q} \\
& f_{2 q}=e(p(\alpha))^{1-2 q}=e(p(\alpha))^{1-2}\left[\alpha^{q}-p(\alpha)\right]+c(p(\alpha))^{h-1} \\
& =a_{0} f_{q+1}+a_{1} f_{q+2}+a_{2} f_{q+3}+\cdots+a_{q-1} f_{2 q}+f_{1} \\
& f_{(h-1)_{q+1}} \alpha= \\
& f_{(h-1) q+2} \alpha= \\
& f_{(h-1) q+2} \\
& f_{(h-1) q+2} \alpha=\quad f_{(h-1) q+3} \\
& f_{h q} \alpha \doteq a_{0} f_{(h-1) q+1}+a_{1} f_{(h-1) q+2}+\cdots+a_{q-1} f_{h q}+f_{(h-1)+1} .
\end{aligned}
$$

Hence, the matrix of α, relative to the basis $f_{1}, f_{2}, \ldots, f_{h}$, has the form (2)

$$
\left(\begin{array}{cccc}
C & & & \tag{2}\\
D & C & & \\
& D & \ddots & \\
& 0 & & { }_{D} \\
& & & \\
&
\end{array}\right)
$$

where C is the companion matrix of $p(x)$ and D is the $q \times q$ matrix (3):

$$
D=\left(\begin{array}{cccc}
0 & 0 & & 0 \tag{3}\\
0 & 0 & \cdots & 0 \\
& \cdot & \cdot & . \\
1 & 0 & \cdots & 0
\end{array}\right)
$$

Theorem 14.7. If α is a cyclic linear transformation of $V_{h}(F)$ with minimum polynomial $m(x)=(p(x))^{h}$, where $p(x)=x^{q}-a_{q-1}$ $x^{n-1}-\cdots-a_{1} x-a_{0}$ is irreducible in $F[x]$, then there exists a basis of $V_{h}(F)$ such that relative to this basis the matrix of α has the form
(2) where C is the companion matrix of $p(x)$, and D is given by (3)

If the reader is in doubt about some of the detals of the preceding he might find it clarifying to wnite out a few more steps in equations (1)

Theorem 148 If a is a cyclic linear transformation of $V_{h}(F)$ with minimum polynomal $m(x)=m_{1}(r) H_{1}(r) \quad m_{r}(x)$, where the $m_{1}(x)$ are relatively prome in pars then $\exists c_{1} c_{2} \quad c_{r} \in V_{n}(F)$ $\ni{L_{n}}_{i}(F)=\left\{e_{1}\right\} \oplus\left\{e_{2}\right\} \oplus \quad \Theta\left\{c_{r}\right\}$ and $m_{c_{i}}(x)=m_{i}(x)$

Proof let $n_{4}(x)=m(x) / m_{1}(x)$ and let $e_{1}=c m(a)$ where e is a generator of $v_{n}(F)$ relatuve to ar Then since α is cyche $m_{r_{i}}(x)$ $=m_{1}(x)$ By Theorem 142 the order of $c=c_{1}+c+\quad+e_{r}$ is $m(x)$ Hence $\{e\}=I_{n}(F)$ ind so $I_{n}(F)=\left\{e_{1}\right\}+\left\{e_{2}\right\}+\quad+$ \{er\} Because of the dimensions thas sum must be direct

Theorem 149 If α is a cyctic linear transformation of $V_{n}(F)$
 where the $p(x)$ are monic isreducible in $F[r]$ und relatively prime in pairs then there exists a basis of $V_{*}(F)$ such that relative to this basis the matrix of a has the form (4) where each H is of the form
(4)

(2) and is determined from $(\rho(x))^{4}$ in the same way as the matnx (2) was determined from $(\rho(x))^{6}$

Proof Apply Theorem 147 and then Theorem 122
Now we stite and prove a proposition which is useful in the proof of a luer theorem and also is useful in applying the last few theorems

Theorem 1410 Let $(n(x))^{2}$ be the highest power of $n(x)$ which divides the minimum polynomial $m(x)$ of the linear transfor mation a of $V_{n}(F)$ where $n(x)$ is arreducibie in $F[x]$ and let $S_{1}=$ $\mathscr{P}(n),-01 \quad \&$ Then $\exists_{a} \in S \geqslant a \notin S_{1}$, for,$\leq h$

Proof $(n(x))^{+1}-n(x)(n(x))$ and so by Theorem 124 $S_{;} \subset S_{i+1}$ We must show that the inclusion relation is a strict inclusion Suppose that $S_{i}-S_{i+1}$ for some $i \leqq \lambda-1$ then the nullity of $(n(\alpha))$ $=$ nullity of $(n(\alpha))^{1}$ and so by Theorem 33 ranh of ($n(\alpha)$) -rank of $(n(\alpha))^{i+1}$ and so if A is the matnx of $\alpha(n(A))$ is equivalent to $(n(A))^{i+1}$ Therefore there exists nonsingular $P \geqslant(n(A)\}^{i-}$
$P(n(A))^{i+1}$. On multiplying both sides by $(n(A))^{k-i-1} g(A)$, where $g(x)=m(x) /(n(x))^{k}$, we then have $f(A)=0$, where $f(x)=(n(x))^{k-1}$ $m(x) /(n(x))^{k}$ is of degree less than the degree of $m(x)$, which is impossible. Therefore, $\exists a \in S_{i}$ and $a \notin S_{i-1}$.

Problem 14.9. For C of Problem 13.4 find $a_{1} \in \mathcal{N}(x-1)$ $\ni a_{1} \notin \mathcal{N}\left((x-1)^{0}\right) ; a_{2} \in \mathcal{N}\left((x-1)^{2}\right) \ni a_{2} \notin \mathcal{N}(x-1)$.

Problem 14.10. Do the same for B of Problem 13.3.
Definition 14.5. The matrix (4) of Theorem 14.9 is called the classical canonical matrix of the cyclic linear transformation α.

Problem 14.11. Find classical canonical matrices for A, C, D of Problems 13.1, 4, 5.

15. NONCYCLIC LINEAR TRANSFORMATIONS

We shall now consider a noncyclic linear transformation α of $V_{h}(F)$. We shall, as we did for Theorem 14.7, prove the theorem first and then state it. Let $m(x)$ be the minimum polynomial of α and we shall first consider the case in which $m(x)=(p(x))^{k}$, where $p(x)=x^{q}-$ $a_{q-1} x^{q-1}-\cdots-a_{1} x-a_{0}$ is irreducible in $F[x]$. By Theorem 14.3, $\exists e_{1} \ni m_{e_{1}}(x)=m(x)$ and let $M_{1}=\left\{e_{1}\right\}$. If α is not cyclic, then $\exists a \in V_{n}(F) \ni a \notin M_{1}$. For every $u \in V_{h}(F), u(p(\alpha))^{k}=0$, $u(p(\alpha))^{n}=u, \quad$ and \quad so $\exists k_{u} \in Z^{*} \ni u(p(\alpha))_{u} \in M_{1} \quad$ while $u(p(\alpha))^{k_{u}-1} \notin M_{1}$. Now of the set of all $a \in M_{1}$, choose one, call it u, such that the k_{u} just discussed is maximum. Now, finally, rename it $e_{2}{ }^{\prime}$ and call $k_{e_{2}}{ }^{\prime}, k_{2}$. Then $e_{2}{ }^{\prime}(p(\alpha))^{k^{\prime 2}}=e_{1} g(\alpha)$, where $g(x) \in F[x]$ and is of degree $<k q$. Now $\exists q(x), r(x) \in F[x] \ni g(x)=(p(x))^{k 2}$ $q(x)+r(x)$, where $r(x)=0$ or $\operatorname{deg} r(x)<k_{2} q$. Then $e_{2}{ }^{\prime}(p(\alpha))^{k_{2}}$ $=c_{1} q(\alpha)(p(\alpha))^{k_{2}}+e_{1} r(\alpha)$. On multiplying by $(p(\alpha))^{k-k_{2}}$, we have $e_{2}^{\prime} m(\alpha)=e_{1} q(\alpha) m(\alpha)+e_{1}(P(\alpha))^{k-k_{2}} r(\alpha)$. Therefore, $e_{1}(p(\alpha))^{k-k_{2}}$ $r(\alpha)=0$. But $(p(x))^{k-k_{2}} r(x)$ is of degree $<\left(k-k_{2} q+k_{2} q=k q\right.$ and the order of e_{1} is of degree $k q$. Therefore, $r(x)=0$. Therefore, $c_{2}{ }^{\prime}(p(\alpha))^{k_{2}}=c_{1} q(\alpha)(p(\alpha))^{k z}$.

Now we define $e_{2}=e_{2}{ }^{\prime}-e_{1} q(\alpha)$. Then $e_{2}(p(\alpha))^{k_{2}}=0 \in M_{1}$. This element e_{2} has the same maximal k_{u} as $e_{2}{ }^{\prime}$, since $e_{2}(p(\alpha))^{k_{2}}$ $=e_{2}{ }^{\prime}(p(\alpha))^{k_{2}-1}-e_{1}(p(\alpha))^{k_{2}-1} q(\alpha)$; if $\quad e_{2}(p(\alpha))^{k_{2}-1} \in M_{1}$, since $e_{1}(p(\alpha))^{k_{2}-1} q(\alpha) \in M_{1}$, we should have $e_{2}^{\prime}(p(\alpha))^{k_{2}-1} \in M_{1}$, which is contrary to the choice of $e_{2}{ }^{\prime}$.

Finally, we must prove that there is no polynomial, $s(x) \in F[x]$, of lower degree than $k_{2} q \ni e_{2} s(\alpha)=0$. For that, let $s(x) \in F[x]$
and es $(x)-0$ Then if $d(x)$ is a g $c d$ of $s(x)$ and $(p(x))^{d=} \exists a(x)$ $b(x) \in F[x] \exists d(x)-s(x) a(x)+(p(x))^{\text {L }} b(x)$ Hence $e_{2} d(x)$ $-e_{2} s(\alpha) a(\alpha)+e_{2}(p(\alpha))^{*} b(\alpha)$ Since the two terms on the right $\in M, e_{2} d(\alpha) \in M$ But sunce $d(x) \mid(p(x))^{4} \quad d(x)-(p(x))^{x}$ where $0<1<h_{2}$ But sunce $e_{2} d(\alpha) \in M_{1}$ and because of the choice of $h_{z},=h_{z}$ and so $s(x)=(p(x))^{h_{1}}(x)$

Now we define $x_{1} g \quad g_{\text {sev }}$ precosely is $f f_{2} \quad f_{h}$, were defined in the proof of Theorem 147 with the e and h of that develop ment replaced by e_{z} ind h_{z} respectively

The is just defined we lincarly independent and the set con sisting of the $f s$ und the o s is linearly independent for otherwise we should have a relation $e_{2} f(\alpha)-e g(x)$ where $f(x)$ and $f(x) \in F[x]$ and qre of degree $<h \quad ;$ and $h q$ respectively By the reasoning given above for $s(x)$ we see that $f(x)$ must be divisible by $(p(x))^{2}$, which is of degree $k_{2} 4$ Therefore in the supposed relation $f(x)$ must be zero and so linear independerce is established

Finally from the form of the $\mathrm{k} s$ it is clear that the subspace generated by them is an invarim subspace relative to α and the effect of α is given by a set of equations precisely of the form of the equations (1) in the proof of Theorem 147 with the f s replaced by the $\& 5$ and h replaced by h_{2}

Let $M_{2}-\left\{\epsilon_{2}\right\}$ Then of $l_{A}(F)-M \in M_{d}$ [by the above if $V_{n}(F)$ is the sum of H and M it is clearly the direct sum] then the matrix of α retative to the s and s s is $\left(\begin{array}{cc}D & 0 \\ 0 & D_{2}\end{array}\right)$ where D are of the form (2) of Theorem 147 [Note the D here ire formed for the same polynomsal whereas in the case of the matnx in Theorem 149 each H is formed for a different polynomal 1

If $V_{n}(F) \neq M \oplus M_{\mathrm{r}}$ then $\exists u \in V(F) \ni a \notin M \oplus M_{z}$ and we proceed ds before to get another invaniant subspace H_{3} with no vectors in common with M and H_{7} except 0 We can continue in this manner until we have $V_{n}(F)-A_{1} \oplus M H_{2} \oplus \oplus \oplus H_{4}$ and we have

Theorem 151 If a is a linear transformation of $V_{h}(F)$ with minimum polynomial $m(x)-(p(x))^{h}$ where $p(x)$ is irreducible in $F[x]$ then there exists at basis of $V_{A}(F)$ such thit relative to this basis the matrx of α bas the form (5) where cach D is of the form (2)
of the matrix in Theorem 14.7 and is the matrix of a cyclic linear transformation of a subspace of $V_{h}(F)$. Each D_{i} is formed from some power of $p(x)$.

If $m(x)=\left(p_{1}(x)\right)^{h_{1}}\left(p_{2}(x)\right)^{h_{2}} \cdots\left(p_{r}(x)\right)^{L_{r}}$, where $p_{1}(x)$ is irreducible in $F[x]$, for $i=1,2, \ldots, r$, and the $p_{1}(x)$ are relatively prime in pairs, then we can apply Theorem 14.9 to express $V_{h}(F)$ as the direct sum of the null spaces of $\left(p_{1}(x)\right)^{h_{1}}$. By the previous development, each null space is expressible as the direct sum of invariant spaces. Thus, $V_{h}(F)$ is expressible as a direct sum of invariant subspaces of the type discussed above. Hence,

Theorem 15.2. If α is a linear transformation of $V_{h}(F)$, then α is expressible as a direct sum of cyclic linear transformations and there exists a basis of $V_{h}(F)$ such that relative to this basis, the matrix of α is the direct sum of matrices of the type of (2) of Theorem 14.7.

16. INVARIANT FACTORS AND SIMILARITY INVARIANTS

Definition 16.1. The diagonal elements different from 0 in the Smith normal form of a matrix as given in Theorem 10.1 are called the invariant factors of A. The invariant factors of $x I-A$ where $A \in F^{s \times s}$ are called the similarity invariants of A.

Theorem 16.1. The matrix A is similar to the matrix $B \Leftrightarrow A$ and B have the same similarity invariants.

Proof: Follows immediately from Theorem 10.1 and Theorem 11.6.

Theorem 16.2. A matrix A is similar to the direct sum of the companion matrices of its similarity invariants.

Problem 16.1. Prove Theorem I6.2.
Definition 16.2. The set of all powers of irreducible factors of the similarity invariants of the matrix A, which actually occur in the similarity invariants, are called the elementary divisors of the matrix A.

Theorem 16.3. A matrix A is similar to the direct sum of the companion matrices of its elementary divisors.

Problem 16.2. Prove Theorem 16.3.
For Problems 16.3 through 16.7 use

$$
A=\left(\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 2 & 3 & 0
\end{array}\right), \quad B=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
2 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2 & 3
\end{array}\right)
$$

Probzem 163 Show that the minimum polynomal of A ts $x^{4}-3 x-2$ that of 8 is $x^{2}-3 x-2$

Proslem 164 Show that the Smith normal form of $x I-A$ is
$\left(\begin{array}{ccc}1 & & 0 \\ 1 & 0 \\ 0 & x+1 & \\ 0 & & m(x)\end{array}\right)$ that of $x /-B$ is $\left(\begin{array}{ccc}1 & & 0 \\ & 1 & 0 \\ 0 & m(x) & \\ & & \\ H(x)\end{array}\right)$.
where in each case $m(x)$ is the mumum polynomal of A or B, respectively

Problem 165 Find a basis of $V_{+}(Q)$ of the type developed in the proof of Theorem is 1 for A and for B

Problem 166 Verify that A and B are in the forms given in the preceding theorems with respect to the bases found in Problem 165

Problem 167 Give matrix with smmlanty invariants $(x-1)^{2}\left(x^{2}+1\right)(x-1)^{7}\left(x^{2}+1\right)^{2}\left(x^{2}+3 x+5\right)$

Problem 168 Do the same as in Problem 167 over $F=Q(t)$
Definition 163 Let $h_{1}(x) h_{z}(x) \quad h_{r}(x)$ be the simi larity invariants of the masrix A Then the polynomal $f(x)=\mathrm{II}_{i-1}^{r}$ $h_{i}(x)$ is the characteristec polynomtal of A

Theorem to 4 The last simalarity invanant of a matrix is the minumem polysomial of A

Corollary 161 (The Hameton-Cayley Theorem) if $f(x)$ is the charactenstic potynomsal of the matrix A then $f(A)=0$

Problem 169 Prove Theorem 164
Problem 1610 Prove Corollary 161

Bibliography

General

Albert, A. A., Fundamental Concepts of Higher Algebra, 1956, Univ. of Chicago Press, Chicago.
Albert, A. A., Modern Higher Algebra, 1937, Univ. of Chicago Press, Chicago.
Birkhoff, G. and MacLane S., A Survey of Modern Algebra, 1965, MacMillan, New York.
Bourbaki, N., Algebre, Chapitres I-1X, Actualités Sci. Ind. 1144, 1951; 1236, 1955, 1044, 1948; 1102, 1950; 1179, 1952; 1261, 1958; 1272, 1959, Hermann, Paris.
Chevalley, C., Fundamemtal Concepts of Algebra, 1956, Academic Press, New York.
Hasse, H., Hohere Algebra, Vol. I, 1933, Vol. II, 1937, de Gruyter, Berln. English translatıon, T.J. Benac, Higher Algebra, 1954, Ungar, New York.
Hu, S., Elements of Modern Algebra, 1965, Holden-Day, San Francisco.
Jacobson N., Lectures in Abstract Algebra, Vol. I, 1951, Vol. II, 1953, Vol. III, 1964, van Nostrand, Princeton.
Kurosh, A. G., General Algebra, I963, Chelsea, New York.
MacDuffee, C. C., Introduction to Abstract Algebra, 1940, Wiley, New York. van der Waerden, Moderne Algebra, Vol. I, 1937, Vol. II, 1931, Springer, Berln. English Translation, F. Blum, Moder" Algebra, 1953, Ungar, New York.
Zariski, O. and Samuel, P., Commutative Algebra, Vol. I, 1958, Vol. II, 1960, van Nostrand, Princeton.

Specialized

Burnside, W., The Theory of groups of Finite Order, 1911, Cambridge Univ. Press, Cambridge.
Halmos, P. R., Finite-Dimensional Spaces, 1958, van Nostrand, Princeton.
Hardy, G. and Wright, E., An Introduction to the Theory of Numbers, 1938, Oxford Univ. Press, Oxford.
Hohn, F., Elementary Matrix Algebra, 1958, MacMillan, New York.
Kurosh, A. G., The Theory of Groups, Vols. I and II, 1960, Chelsea, New York.

MacDuffee C C Vectors and Matrtes 1943 Mathematical Assoctation of America Buffalo
McCoy N H Ringsand Ideals 19.48 Mathematical Astociation of America Buffalo
Pollard H The Thenry of Algebrate Numbers 1950 Mathematical Asso cation of America Buffalo
Red L W The Elements of the Theor of Algebrac Numbers 1910 Macmil|an New York (This book also discusses fields and ideals)
Robanson A Numbers and Ideals 1965 Holden Day San Franesseo
Stoll R R Linear Algebra and MaIrs Theory 1952 McGraw Hill New York
Weisner L Introdncuon P) the Theory of Equations 1938 Macmilan New York

Index

$A^{H}, 110$
Abelian group, 57
Absolute value of integers, 36
Addition of natural numbers, 9
Additive
gioup of $N, 17$
exponent, 20
Adjacent words, 70
Adjunction, 138
Algebra, 112
Inear associative, 112
Inear nonassociative, 112
of rational quaternions, 115
polynomal, 117
total matric, 169
Algebrate
element, 135
field, 136
systems, 100
systems, product of, 100
Algorithm, division, 118
Alter nating group, 81
Antecedent of a natural number, 9
Anti-automorphism, 78
Ant-isomorphism, 78
Associate, 38
Associatuve
algebra, 112
law, 7
law generalızed, 19
law for mappings, 18
Automorphism
inner, of a group, 29
of algebraic systems. 101
of a semıgroup, 29
outcr, of a group, 59
Basis
of an abelian group, 94
of an R-module. 108
Bclongs to, 2
Bilateral ideal, 128
Binary operation. 6

Cancellation law, 10
Canonical
matrix, Jordan, 196
matrix, classical, 198
Cartesian product, 5
Cauchy, 75
Cayley, 79, 202
Center of a group, 61
Central of a group, 61
Characteristic
of a field, 93, 99, 143
of a ring, 93, 99
polynomial, 202
Circular permutation, 79
Classical canomical matrix, 199
Closed, 6, 97
Coefficients
leading, 117
of a linear combination, 105
of a polynomial, 117, 127
Column, (see property without the modifier column)
Common part, 3
Commutative
group, 57
property, 6, 7
ring, 95
Companion matrix, 196
Compatible, 13
with the structure of a ring, 130
Complete
set of conjugates, 63
set of residue classes modulo $m, 43$
Component, 66, 103
Composite, 6
of a finite scquence of elements, 19
Composition
external, 97
factors of, 90
internal, 5
series, 90
table of a semigroup, 28
Congruence modulo m. 43

206
Conjugate
elements of a group 63
elements over a field 143
quaternions 115
subfields 142
subgroups 63
Contained in 2
Coordinates 173
Cosets of a grous $\$ 3$
Cysle 79
Cyclie
group 4773
linear stansformat on 195
permutation 79
spact 193
subgraup 49
Cyclotomic
extension of a field $1<3$
field 152
polynomul 193
Denined everywhere 6
Defining relations 77
Degree
of an element over a field 136
of one field over inother 135
of d permutation 78
ord polynomial 117
proper 184
reduced 144
Denvative of a polynemal 121
Diggonal matrix 183
D ference ring |31
Dmens on 109
D hedral group 63 73
Direst
product of groups 66
sum of groupt 66
sum of R moduler 104188
sum of two inear tramsotmation 18 k
Disjo nt
sets 1
cycles 79
Ditnburive taw *
Division
algonitm 118
ang 95
Divisor 37
elementary 701
greatest common 38
of zero 94
proper 38
Divisorless Ideal 131
Doman
inlegral 95

Index
of integrity 95
Fisenstens thearem 124
Element
adjacent 70
conjuate of a group 63
conjugete over a field 145
usentity 95
enseparabie 148
neutral 22
period of 50
permutable 95
promutive 154
promuture theorent 155
regular 94
separable 148
Elementary
matnx 177
operations on a malns 176
Elemeniary divisor 201
Empty
set 1
word 70
Endomorphusta
of an sigehralc system 100
of themagyerp 29
sum of 89
Equalty *
of mapping, 4
Equation falso uet polynormal)
homogeneuas 175
monhomogeneous 175
pure 160
Equivalence
clest " 6
of matrices 176177
relat on "6
Fasemtally unique factorization 41 4*
Eucladean doman lis
Fuler 4345
totent funct on as
Even
integers 45
permutation 87
Everywhere dufined 5
Exponent 2037
additive ${ }^{0} 0$
multrpincalive 20
Extensiont
algetrac 136
cyclotomic 148
Galois 156
of a marp ng 5
of a semugroup 35
pure lit)
transcendental, 136
External composition, 97
Factor
group, 57
invariant, 201
of composition, 90
prime factor group, 90
Factorization, unique, 41, 42, 123
Factors completely, 139
F-automorphism, 141
Fermat, 45
Field, 95
cyclotomic, 152
finite, 153
Galois, 153
inseparable, 148
normal, 146
of quotients, 97
of quotients of polynomials, 127
of rational numbers, 97
prime, 143
root, 140
separable, 148
splitting, 140
stem, 139
F-isomorphism, 144
Finite
characteristic, 94
extension, 133
field, 153
group, 23
sequence, 19
For each, for every, for all, 1
Form, Smith normal, 184, 196
Free, 107
group, 71
module, 108
Function, polynomial, 120
Galois
extension, 156
field, 153
group. 157
resolvent, 156
theory of fields, 156
Gauss' lemma, 124
Gaussian semigroup, 123
Generator of a group or semigroup, 49
Greatest common divisor, 38
Group, 23, 24
alternating, 81
cyclic, 49
factor, 57
free, 71

Galois, 157
generators, 49
product, 27
quotient, 57
simple, 77
subgroup, 24
symmetric, 78
with operators, 98
Hamilton, 202
Hölder, 92
Homogeneous equations, 175
Homologous, 100
Homomorphism
of algebraic systems, 101
of semigroups, 29
Ideal, 128
bilateral, 128
divisorless, 131
maximal, 131
prime, 131
principal, 129
principal, ring, 129
two-sided, 128
Identity
element, 93
mapping, 4
Image, 3, 5
Imbedding of a semigroup, 31,33
Imply, 1
Improper subgroup, 46
Indeterminates, 117, 127
Indexing set, 5
Induction, mathematical, 9
Induced law
in quotient set, 31
in subset, 21
Inequality of natural numbers, 14
Inner automorphism, 59
Inseparable
element, 148
field, 148
polynomial, 148
Integers, 35
absolute value of, 36
negative, 36
positive, 36
Integral domain, 95
Integrity, domain of, 95
Internal composition, 5
Intersection, 3
Invariant
element, 98
factor, 201
maximal subgroup 89
subgroup 56
subspace 187
Invariants similanty 201
Invarants of an abelian group 84
Inverse element 22
Irreducible element 38
lsomorphism
of algetbraic sysiems 101
of semugroups 29
Jordan 90
canonical matrix, 196
Kernel 57
Lagrange 94
Law
asposiative 719
eancellation 10
commutative $?$
distrobultys:
indueed in subuet 21
induced in quotiend set 31
of extermal eomposition 91
of aternal composition * of tinchotomy II
Leading coeffietent 117
Leas!
common muluple 38
residues modulo m, 43
Leff (ses property withoul adsectuye lefi)
Length of a word 70
bimear
combination 104
mapping 165
matrix of 169
fransformation 165
nonderogatory 195
nonomgular 16.5
relation 111
Lincar dependence 105107
Logic :
Mappirg 3
associative law 18
extension of 5
group of $24 \quad 25$
sdentity 4
hnear 165
one to one 4
onto 4
product of 1617
resthetion of 5
Mathemalicat induction 9

Matne algebsa total 169
Matne 169
chisseal canomesal 199
compamion 196
dagosal 183
elementary 137
Jordan eanonseal 196
monrangular 173
simulanty of 186
Ataximal ideal 131
Maximaf invarant subgroup 89
Alinumum polynomat 135190
Modulc 102
null 170
of formal hinear combinations II
of linear relations |11
Modulus 43
Monic polynomial 117
Multiple 37
least commen 38
Niult platy of a zere of a polynomal 121
Nultiplication of natural numiers 12
Multiplicative
exponent 29
croup of N 17
N
Natural numbers 8
sdditive semigroup 17
multupfieative sermgroup 17
Necessary and sufficient I
Negation 2
Negatuve integer is
Neutral clement 22
Neutral operator 98
Nondurogatory I neat transformatorn 195
Nonhomogeneous squation 179
Nonsingular
linear transformation 165
matrix 173
Norm of a quatermon IIs
Normial
field 146
polynomisel 144
sulgroup 56
Normatizer 3364
Nu t
module 170
set 3
space 170
Nuilaty 170
Numbers matural 5
Odd
anteger 45
permutation, 81
One-to-one mapping, 4
Onto mapping, 4
Operation, binary, 6
Operator, 98
neutral operator, 98
Order
of a cyclotomic extension, 158
of a cyclotomic polynomial, 153
of an element, 50 , 92
of a group, 23
Outer automorphism, 59
Partition, 26
Peano, 9
Period of an element, 50
Permutable
elements of a group, 66
elements of a ring, 94
Permutation, 78
circular, 79
cyclic, 79
Polynomial, 117, 127
algebra, 117
characteristuc, 202
cyclotomic, 153
function, 120
inseparable, 148
minimum, of an element of a field, 136
minimum, of a linear transformation, 190
monic. 117
normal, 146
pure, 160
ring, 117
separable, 148
Positive integer, 36
Power, 20
Prime, 38
factor groups, 90
field, 143
ideal, 131
in 2, 38
to, 40
subfield, 143
Primitive
element, 154
element theorem, 155
polynomal, 123
Principal ideal, 129
ring, 129
Product
cartesian, 5
direct. 66
group, 27
of algebraic systems, 100
of mappings, 17, 18
of words, 76
semigroup, 27
set, 5
Proper
degree, 185
divisor, 38
subgroup, 46
subset, 2
Pure
extension field, 160
polynomial, 160
Q, 97
Quaternion
group, 12, 73
rational quaternions, 114,115
Quotient
group, 57
ring, 130
set. 26
set, law induced in, 31
Quotients, Field of, 97
Rank
of a free group, 72
of a matrix, 170, 182
Rational
integers, 35 (see integers)
numbers. 97
Reduce a linear transformation
completely, 188
Reduced
degree, 149
residues modulo $m, 43$
word, 70
Reflexive, 2, 13
Regular element, 94
Relations, 13
Defining relations, 73
equivalence, 26
reflexive property for, 13
symmetric property for, 13
transitive property for, 13
Relatively prime, 40
Residue classes modulo $m, 43$
complete, 43
least, 43
reduced, 43
Resolvent, Galois, 156
Restriction
of an external law, 100
of a mapping. 5

Right (see property without adjective no.ht)
Ring 92
dfference 13i
division 95
of rational integers 35
prineipal ideal 129
product 95
quotrent 130
with operators 112
zero ring 94
Root of unity 152
Root field 140
Row (see property without the mod fier row)
R module 10^{3}
5, 21
h.s 18

Self conjugate subgrour 56
Semgroup ith
compobition table 38
extension 31
Gdussian 173
generators 48
product 27
subsem group 1
Sepurable
element 148
field 148
polynom al 148
Sequence finte 19
Sel 2
empiy 3
induxing s
nold 3
of generators 49
produst 5
proper subset *
subsel 2
Sfield 95
Similar matrices 186
Smiarsly
niveriants 201
of matrices 186
Simple
extens on of a field 136
group 77
Smallest subset possessing a property 48
Smith normal forn 196184
Salvable group 91
Salvability by radicals 16°
Space
cycle 193
null 170
vector 103
\$peeies 100
Spliting fied 140
Stable subgreup 98
Stem fietd 134
Sublield
belonging io a subgroup 15 !
conjugate 142
prume 143
Subgroup 24
belonging 10 a subfield ISI
cyclec 49
improper 46
invars int 56
maximil invariant 89
normal 56
proper 46
self-conjugate 56
stable 98
Sylow 74
Submodile J0V 105
Subring 99
Subsemtroup 11
Subret ?
proper ?
umaltest possesaing a property 48
Subspace
invanont 187
vectur 103
Suhsystem Ito
Sutcessor of a natural number 9
Such that I
Sum
direct croupy 8
direst of linear transformation, 188
direct of R modules 104
of endomorphisms 89
Supplerivestary 104
Sylow subgrenap 74
Symiticiric
cord inon 13
growe 78
Table composition of a semigroup 28
There exists I
Total Matric Algebra 169
Totient function 43
Transcendemal
element 135
fickl 136
Transfortsat on linear 165
minumum polynormal 190
nondercgatory 195
nonsungular 165

Transitive, 2, 13
Translation, 78
Transposition, 80
Trichotomy, law of for natural numbers, 11
Trisection of an angle, 140
Two-sided ideal, 128
Union, 3
Unique factorization, 41, 42
Unit, 37
Unitary R-module, 102
Unity, root of, 152
Vector space, 103
subspace, 103
$V_{n}{ }^{L}(R), 103$

Word, 70
adjacent, 71
empty, 70
length, 70
product, 70
reduced, 70
Z, 35
Zero
characteristic, 94
divisor of, 94
integer, 35
of a polynomial, 121
of a ring, 93
polynomial, 117
ring, 94

[^0]: Problem 197 Prove Theorem 197
 Problem 198 Prove Theorem 198

